Nagaraju G

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5384450/publications.pdf Version: 2024-02-01

NACADALLIC

#	Article	IF	CITATIONS
1	Recent progress in metal-doped TiO2, non-metal doped/codoped TiO2 and TiO2 nanostructured hybrids for enhanced photocatalysis. International Journal of Hydrogen Energy, 2020, 45, 7764-7778.	7.1	493
2	Recent advances in non-metals-doped TiO2 nanostructured photocatalysts for visible-light driven hydrogen production, CO2 reduction and air purification. International Journal of Hydrogen Energy, 2019, 44, 13022-13039.	7.1	207
3	Green, Nonchemical Route for the Synthesis of ZnO Superstructures, Evaluation of Its Applications toward Photocatalysis, Photoluminescence, and Biosensing. Crystal Growth and Design, 2016, 16, 6828-6840.	3.0	93
4	Facile microwave-assisted green synthesis of ZnO nanoparticles: application to photodegradation, antibacterial and antioxidant. Journal of Materials Science: Materials in Electronics, 2020, 31, 1004-1021.	2.2	86
5	Sugarcane juice mediated eco-friendly synthesis of visible light active zinc ferrite nanoparticles: Application to degradation of mixed dyes and antibacterial activities. Materials Chemistry and Physics, 2018, 212, 351-362.	4.0	84
6	Vitis labruska skin extract assisted green synthesis of ZnO super structures for multifunctional applications. Ceramics International, 2017, 43, 11656-11667.	4.8	72
7	Enhanced Photocatalytic Activity and Biosensing of Gadolinium Substituted BiFeO ₃ Nanoparticles. ChemistrySelect, 2018, 3, 9025-9033.	1.5	69
8	One-pot synthesis of Cu–TiO2/CuO nanocomposite: Application to photocatalysis for enhanced H2 production, dye degradation & detoxification of Cr (VI). International Journal of Hydrogen Energy, 2020, 45, 7813-7828.	7.1	55
9	One step synthesis of monoclinic VO2 (B) bundles of nanorods: Cathode for Li ion battery. Materials Characterization, 2012, 68, 58-62.	4.4	54
10	Cost-effective and green approach for the synthesis of zinc ferrite nanoparticles using Aegle Marmelos extract as a fuel: catalytic, electrochemical, and microbial applications. Journal of Materials Science: Materials in Electronics, 2020, 31, 17386-17403.	2.2	51
11	Ionothermal synthesis of TiO2 nanoparticles: Photocatalytic hydrogen generation. Materials Letters, 2013, 109, 27-30.	2.6	50
12	Ionic liquid-assisted hydrothermal synthesis of TiO2 nanoparticles and its application in photocatalysis. Journal of Materials Science, 2013, 48, 8420-8426.	3.7	49
13	Enhanced oral bioavailability of an antipsychotic drug through nanostructured lipid carriers. International Journal of Biological Macromolecules, 2018, 110, 269-275.	7.5	47
14	Ionic liquid-assisted hydrothermal synthesis of SnS nanoparticles: Electrode materials for lithium batteries, photoluminescence and photocatalytic activities. Journal of Energy Chemistry, 2018, 27, 806-812.	12.9	46
15	Mesoporous Ta2O5 nanoparticles as an anode material for lithium ion battery and an efficient photocatalyst for hydrogen evolution. International Journal of Hydrogen Energy, 2018, 43, 18125-18135.	7.1	43
16	Photocatalytic activity of Li-doped TiO2 nanoparticles: Synthesis via ionic liquid-assisted hydrothermal route. Materials Research Bulletin, 2016, 78, 103-111.	5.2	40
17	High capacity MoO ₃ /rGO nanocomposite anode for lithium ion batteries: an intuition into the conversion mechanism of MoO ₃ . New Journal of Chemistry, 2018, 42, 18569-18577.	2.8	36
18	Highly porous, honeycomb like Ag–ZnO nanomaterials for enhanced photocatalytic and photoluminescence studies: green synthesis using Azadirachta indica gum. SN Applied Sciences, 2019, 1, 1	2.9	35

Nagaraju G

#	Article	IF	CITATIONS
19	One pot green synthesis of MnCO ₃ –rGO composite hybrid superstructure: application to lithium ion battery and biosensor. New Journal of Chemistry, 2017, 41, 12854-12865.	2.8	33
20	Synthesis and Characterisation of Mesoporous TiO2 Nanoparticles by Novel Surfactant Assisted Sol-gel Method for the Degradation of Organic Compounds. Periodica Polytechnica: Chemical Engineering, 2018, 63, 85-95.	1.1	30
21	Multiple applications of combustion derived nickel oxide nanoparticles. Journal of Materials Science: Materials in Electronics, 2018, 29, 277-287.	2.2	29
22	One step hydrothermal synthesis of novel Cu2S-MoO3 nanocomposite for lithium ion batteryÂand photocatalytic applications. International Journal of Hydrogen Energy, 2018, 43, 4003-4014.	7.1	28
23	Implementing an in-situ carbon formation of MoO3 nanoparticles for high performance lithium-ion battery. Ceramics International, 2021, 47, 10261-10267.	4.8	27
24	Rauvolfia tetraphylla (Devil Pepper)-Mediated Green Synthesis of Ag Nanoparticles: Applications to Anticancer, Antioxidant and Antimitotic. Journal of Cluster Science, 2019, 30, 1545-1564.	3.3	26
25	Robust electrochemistry of black TiO2 as stable and high-rate negative electrode for lithium-ion batteries. Materials for Renewable and Sustainable Energy, 2019, 8, 1.	3.6	21
26	Ionothermal synthesis of TiO 2 nanoparticles for enhanced photocatalytic H 2 generation. International Journal of Hydrogen Energy, 2018, 43, 4028-4035.	7.1	20
27	Facile combustion synthesis of Ag ₂ O nanoparticles using cantaloupe seeds and their multidisciplinary applications. Applied Organometallic Chemistry, 2020, 34, e5830.	3.5	20
28	Biosynthesis of Cu4O3 nanoparticles using Razma seeds: application to antibacterial and cytotoxicity activities. SN Applied Sciences, 2019, 1, 1.	2.9	16
29	Mesoporous MnMoO ₄ Nanorods for Enhanced Electrochemical Performance. ChemistrySelect, 2018, 3, 7490-7495.	1.5	13
30	Sonochemical synthesis of SnO2–CuO nanocomposite: diverse applications on Li-ion battery, electrochemical sensing and photocatalytic activity. Journal of Materials Science: Materials in Electronics, 2020, 31, 8737-8749.	2.2	13
31	Combustion synthesis of β-SnWO4-rGO: Anode material for Li-ion battery and photocatalytic dye degradation. Ceramics International, 2021, 47, 10291-10300.	4.8	12
32	Sensing and sensitive visualization of latent fingerprints on various surfaces using a versatile fluorescent aggregationâ€induced emissionâ€based coumarin derivative. Luminescence, 2021, 36, 1013-1023.	2.9	12
33	Ag decorated V2O5 nanorods as cathode material for lithium ion battery. Journal of Materials Science: Materials in Electronics, 2020, 31, 14279-14286.	2.2	10
34	Composition of MoO2Nanoparticles with RGO Sheets as Improved Lithium Ion Battery Anode. ChemistrySelect, 2018, 3, 13289-13296.	1.5	8
35	Synthesis of \$\$hbox {V}_{2} hbox {O}_{5}\$\$ V 2 O 5 nanoparticles: cathode materials for lithium-ion batteries. Bulletin of Materials Science, 2019, 42, 1.	1.7	8
36	Engineering the MxZn1â^'xO (M = Al3+, Fe3+, Cr3+) nanoparticles for visible light-assisted catalytic mineralization of methylene blue dye using Taguchi design. Chemical Papers, 2020, 74, 2719-2731.	2.2	8

Nagaraju G

#	Article	IF	CITATIONS
37	Low temperature ionothermal synthesis of TiO 2 nanomaterials for efficient photocatalytic H 2 production, dye degradation and photoluminescence studies. International Journal of Energy Research, 2020, 44, 8362-8371.	4.5	8
38	Green synthesis of LiZnVO4 nanoparticles and its multiple applications towards electrochemical sensor, supercapacitor, humidity sensing, photoluminescence and antioxidant activities. Journal of Materials Science: Materials in Electronics, 2022, 33, 10902-10918.	2.2	8
39	Design of novel perovskite KTaO3 nanoflowers via hydrothermal synthesis for electrochemical lithium storage and dopamine biosensing. Materials Chemistry and Physics, 2022, 282, 125990.	4.0	8
40	Hydrothermal Synthesis of TiO 2 -rGO By Green Chemical Method. Materials Today: Proceedings, 2017, 4, 11888-11893.	1.8	7
41	A novel, green, rapid, nonchemical route hydrothermal assisted biosynthesis of Ag nanomaterial by blushwood berry extract and evaluation of its diverse applications. Applied Nanoscience (Switzerland), 2020, 10, 3341-3351.	3.1	7
42	Synthesis of novel pseudo-capacitive perovskite nanostructured flowerlike KTaO3 for lithium ion storage. International Journal of Hydrogen Energy, 2021, 46, 28214-28220.	7.1	7
43	Highly distorted mesoporous S/C/Ti3+ doped black TiO2 for simultaneous visible light degradation of multiple dyes. New Journal of Chemistry, 2020, 44, 9830-9836.	2.8	7
44	Rapid Microwave Synthesis of β-SnWO4 Nanoparticles: An Efficient Anode Material for Lithium Ion Batteries. Crystals, 2021, 11, 334.	2.2	6
45	CdS@MoS2 core–shell nanospheres: a new electrode for lithium ion batteries. Journal of Materials Science: Materials in Electronics, 2019, 30, 14456-14463.	2.2	5
46	Vanadium oxide nanorings: Facile synthesis, formation mechanism and electrochemical properties. Materials Research Bulletin, 2016, 83, 542-549.	5.2	4
47	Green synthesis of molybdenum oxide nanoparticles: Advanced electrode material for electrochemical lithium storage. Microchemical Journal, 2021, 171, 106818.	4.5	4
48	Bio-derived ZnO nanoparticles as an efficient catalyst for photocatalytic activity and biodiesel production. AIP Conference Proceedings, 2018, , .	0.4	3
49	Tantalum pentoxide-reduced graphene oxide nanocomposite as a new conversion type anode material having extrinsic pseudocapacitance for electrochemical lithium storage. Journal of Energy Storage, 2020, 32, 101991.	8.1	2
50	Mesoporous Mo4V6O25 as high electrochemical performance anode material for lithium ion battery. Journal of Materials Science: Materials in Electronics, 2021, 32, 1593-1601.	2.2	1
51	Multi-function NiFe2O4 Nanoparticles for Sodium-ion Battery, Sensing and photocatalysis. New Journal of Chemistry, 0, , .	2.8	1
52	Facile combustion synthesis of highly active Mo doped BiVO ₄ for photocatalytic dye degradation, photo-oxidation of alcohols, antifungal and antioxidant activities. International Journal of Environmental Analytical Chemistry, 0, , 1-20.	3.3	0