

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5384243/publications.pdf Version: 2024-02-01

		38660	46693
109	8,416	50	89
papers	citations	h-index	g-index
113	113	113	11742
all docs	docs citations	times ranked	citing authors

**FI\\/FI

#	Article	IF	CITATIONS
1	Surface Charge Affects Cellular Uptake and Intracellular Trafficking of Chitosan-Based Nanoparticles. Biomacromolecules, 2011, 12, 2440-2446.	2.6	478
2	Preparation of Hierarchical Hollow CaCO ₃ Particles and the Application as Anticancer Drug Carrier. Journal of the American Chemical Society, 2008, 130, 15808-15810.	6.6	431
3	The role of the lateral dimension of graphene oxide in the regulation of cellular responses. Biomaterials, 2012, 33, 4013-4021.	5.7	344
4	A thermosensitive hydrogel based on quaternized chitosan and poly(ethylene glycol) for nasal drug delivery system. Biomaterials, 2007, 28, 2220-2232.	5.7	307
5	Preparation and evaluation of alginate–chitosan microspheres for oral delivery of insulin. European Journal of Pharmaceutics and Biopharmaceutics, 2011, 77, 11-19.	2.0	262
6	Engineering Magnetosomes for Ferroptosis/Immunomodulation Synergism in Cancer. ACS Nano, 2019, 13, 5662-5673.	7.3	261
7	Packaging and delivering enzymes by amorphous metal-organic frameworks. Nature Communications, 2019, 10, 5165.	5.8	234
8	Immunomodulationâ€Enhanced Nanozymeâ€Based Tumor Catalytic Therapy. Advanced Materials, 2020, 32, e2003563.	11.1	226
9	Biomimetic Immunoâ€Magnetosomes for Highâ€Performance Enrichment of Circulating Tumor Cells. Advanced Materials, 2016, 28, 7929-7935.	11.1	190
10	Exploiting the pliability and lateral mobility of Pickering emulsion for enhanced vaccination. Nature Materials, 2018, 17, 187-194.	13.3	190
11	Multifunctional mesoporous material for detection, adsorption and removal of Hg2+ in aqueous solution. Journal of Materials Chemistry, 2010, 20, 4635.	6.7	169
12	PEGylated graphene oxide elicits strong immunological responses despite surface passivation. Nature Communications, 2017, 8, 14537.	5.8	157
13	Nanolongan with Multiple On-Demand Conversions for Ferroptosis–Apoptosis Combined Anticancer Therapy. ACS Nano, 2019, 13, 260-273.	7.3	155
14	Revealing the immune perturbation of black phosphorus nanomaterials to macrophages by understanding the protein corona. Nature Communications, 2018, 9, 2480.	5.8	152
15	Biomimetic Magnetosomes as Versatile Artificial Antigen-Presenting Cells to Potentiate T-Cell-Based Anticancer Therapy. ACS Nano, 2017, 11, 10724-10732.	7.3	150
16	Particle size affects the cellular response in macrophages. European Journal of Pharmaceutical Sciences, 2010, 41, 650-657.	1.9	147
17	Pore size of macroporous polystyrene microspheres affects lipase immobilization. Journal of Molecular Catalysis B: Enzymatic, 2010, 66, 182-189.	1.8	139
18	Codelivery of mTERT siRNA and paclitaxel by chitosan-based nanoparticles promoted synergistic tumor suppression. Biomaterials, 2013, 34, 3912-3923.	5.7	133

WEI WEI

#	Article	IF	CITATIONS
19	Monodisperse Chitosan Microspheres with Interesting Structures for Protein Drug Delivery. Advanced Materials, 2008, 20, 2292-2296.	11.1	123
20	Biomineralized Bacterial Outer Membrane Vesicles Potentiate Safe and Efficient Tumor Microenvironment Reprogramming for Anticancer Therapy. Advanced Materials, 2020, 32, e2002085.	11.1	118
21	Programmed co-delivery of paclitaxel and doxorubicin boosted by camouflaging with erythrocyte membrane. Nanoscale, 2015, 7, 4020-4030.	2.8	111
22	Apoferritin–CeO ₂ nano-truffle that has excellent artificial redox enzyme activity. Chemical Communications, 2012, 48, 3155-3157.	2.2	105
23	Thermal-sensitive hydrogel as adjuvant-free vaccine delivery system for H5N1 intranasal immunization. Biomaterials, 2012, 33, 2351-2360.	5.7	96
24	MOFs-based nanoagent enables dual mitochondrial damage in synergistic antitumor therapy via oxidative stress and calcium overload. Nature Communications, 2021, 12, 6399.	5.8	95
25	Iron Oxide Nanotubes for Magnetically Guided Delivery and pHâ€Activated Release of Insoluble Anticancer Drugs. Advanced Functional Materials, 2011, 21, 3446-3453.	7.8	93
26	Transport of a graphene nanosheet sandwiched inside cell membranes. Science Advances, 2019, 5, eaaw3192.	4.7	93
27	Highly Efficient In Vivo Cancer Therapy by an Implantable Magnet Triboelectric Nanogenerator. Advanced Functional Materials, 2019, 29, 1808640.	7.8	92
28	Porous Quaternized Chitosan Nanoparticles Containing Paclitaxel Nanocrystals Improved Therapeutic Efficacy in Non-Small-Cell Lung Cancer after Oral Administration. Biomacromolecules, 2011, 12, 4230-4239.	2.6	88
29	Cancer Cell Membrane-Biomimetic Nanoprobes with Two-Photon Excitation and Near-Infrared Emission for Intravital Tumor Fluorescence Imaging. ACS Nano, 2018, 12, 1350-1358.	7.3	88
30	Macrophage-tumor chimeric exosomes accumulate in lymph node and tumor to activate the immune response and the tumor microenvironment. Science Translational Medicine, 2021, 13, eabb6981.	5.8	84
31	Thermosensitive polymer-conjugated albumin nanospheres as thermal targeting anti-cancer drug carrier. European Journal of Pharmaceutical Sciences, 2008, 35, 271-282.	1.9	77
32	A galactosamine-mediated drug delivery carrier for targeted liver cancer therapy. Pharmacological Research, 2011, 64, 410-419.	3.1	73
33	Targeted Delivery of Insoluble Cargo (Paclitaxel) by PEGylated Chitosan Nanoparticles Grafted with Arg-Gly-Asp (RGD). Molecular Pharmaceutics, 2012, 9, 1736-1747.	2.3	72
34	Nanoparticles-based multi-adjuvant whole cell tumor vaccine forÂcancer immunotherapy. Biomaterials, 2013, 34, 8291-8300.	5.7	71
35	Magnetic Nanoclusters Armed with Responsive PD-1 Antibody Synergistically Improved Adoptive T-Cell Therapy for Solid Tumors. ACS Nano, 2019, 13, 1469-1478.	7.3	71
36	Porogen effects in synthesis of uniform micrometer-sized poly(divinylbenzene) microspheres with high surface areas. Journal of Colloid and Interface Science, 2008, 323, 52-59.	5.0	69

WEI WEI

#	Article	IF	CITATIONS
37	Construction of a Biomimetic Magnetosome and Its Application as a SiRNA Carrier for Highâ€Performance Anticancer Therapy. Advanced Functional Materials, 2018, 28, 1703326.	7.8	69
38	Uniform-sized PLA nanoparticles: Preparation by premix membrane emulsification. International Journal of Pharmaceutics, 2008, 359, 294-297.	2.6	66
39	Engineering Magnetosomes for High-Performance Cancer Vaccination. ACS Central Science, 2019, 5, 796-807.	5.3	66
40	Arsenene: A Potential Therapeutic Agent for Acute Promyelocytic Leukaemia Cells by Acting on Nuclear Proteins. Angewandte Chemie - International Edition, 2020, 59, 5151-5158.	7.2	62
41	Preparation of uniform-sized PELA microspheres with high encapsulation efficiency of antigen by premix membrane emulsification. Journal of Colloid and Interface Science, 2008, 323, 267-273.	5.0	60
42	Self-healing microcapsules synergetically modulate immunization microenvironments for potent cancer vaccination. Science Advances, 2020, 6, eaay7735.	4.7	58
43	Establishment of peripheral blood mononuclear cell-derived humanized lung cancer mouse models for studying efficacy of PD-L1/PD-1 targeted immunotherapy. MAbs, 2018, 10, 1301-1311.	2.6	57
44	Near-infrared light–triggered platelet arsenal for combined photothermal-immunotherapy against cancer. Science Advances, 2021, 7, .	4.7	57
45	Hollow quaternized chitosan microspheres increase the therapeutic effect of orally administered insulin. Acta Biomaterialia, 2010, 6, 205-209.	4.1	56
46	Therapeutic vaccination against leukaemia via the sustained release of co-encapsulated anti-PD-1 and a leukaemia-associated antigen. Nature Biomedical Engineering, 2021, 5, 414-428.	11.6	56
47	Identification of SARS-CoV-2-against aptamer with high neutralization activity by blocking the RBD domain of spike protein 1. Signal Transduction and Targeted Therapy, 2021, 6, 227.	7.1	56
48	Preparation of uniform-sized pH-sensitive quaternized chitosan microsphere by combining membrane emulsification technique and thermal-gelation method. Colloids and Surfaces B: Biointerfaces, 2008, 63, 164-175.	2.5	55
49	Exploration of Antigen Induced CaCO ₃ Nanoparticles for Therapeutic Vaccine. Small, 2018, 14, e1704272.	5.2	55
50	Superior Intratumoral Penetration of Paclitaxel Nanodots Strengthens Tumor Restriction and Metastasis Prevention. Small, 2015, 11, 2518-2526.	5.2	54
51	Background-free latent fingerprint imaging based on nanocrystals with long-lived luminescence and pH-guided recognition. Nano Research, 2018, 11, 6167-6176.	5.8	52
52	Reduction of choroidal neovascularization via cleavable VEGF antibodies conjugated to exosomes derived from regulatory T cells. Nature Biomedical Engineering, 2021, 5, 968-982.	11.6	52
53	Exploration and functionalization of M1-macrophage extracellular vesicles for effective accumulation in glioblastoma and strong synergistic therapeutic effects. Signal Transduction and Targeted Therapy, 2022, 7, 74.	7.1	52
54	Galactosylated nanocrystallites of insoluble anticancer drug for liver-targeting therapy: an <i>in vitro</i> vitro	1.7	51

Wei Wei

#	Article	IF	CITATIONS
55	Bioinspired peptosomes with programmed stimuli-responses for sequential drug release and high-performance anticancer therapy. Nanoscale, 2017, 9, 9317-9324.	2.8	51
56	Biosynthesis of Selfâ€Assembled Proteinaceous Nanoparticles for Vaccination. Advanced Materials, 2020, 32, e2002940.	11.1	50
57	Exploration of graphene oxide as an intelligent platform for cancer vaccines. Nanoscale, 2015, 7, 19949-19957.	2.8	49
58	Surface-Engineered Graphene Navigate Divergent Biological Outcomes toward Macrophages. ACS Applied Materials & Interfaces, 2015, 7, 5239-5247.	4.0	48
59	Biomimetically Engineered Demiâ€Bacteria Potentiate Vaccination against Cancer. Advanced Science, 2017, 4, 1700083.	5.6	47
60	Simulation of nanoparticles interacting with a cell membrane: probing the structural basis and potential biomedical application. NPG Asia Materials, 2021, 13, .	3.8	46
61	Preparation of Uniformly Sized Chitosan Nanospheres by a Premix Membrane Emulsification Technique. Industrial & Engineering Chemistry Research, 2009, 48, 8819-8828.	1.8	45
62	Apoferritin-camouflaged Pt nanoparticles: surface effects on cellular uptake and cytotoxicity. Journal of Materials Chemistry, 2011, 21, 7105.	6.7	44
63	Ferritin-based targeted delivery of arsenic to diverse leukaemia types confers strong anti-leukaemia therapeutic effects. Nature Nanotechnology, 2021, 16, 1413-1423.	15.6	44
64	An Effective Way To Hydrophilize Gigaporous Polystyrene Microspheres as Rapid Chromatographic Separation Media for Proteins. Langmuir, 2008, 24, 13646-13652.	1.6	42
65	Bioprocess of uniform-sized crosslinked chitosan microspheres in rats following oral administration. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 69, 878-886.	2.0	41
66	Antimonene with two-orders-of-magnitude improved stability for high-performance cancer theranostics. Chemical Science, 2019, 10, 4847-4853.	3.7	39
67	Tumor Exosomes Reprogrammed by Low pH Are Efficient Targeting Vehicles for Smart Drug Delivery and Personalized Therapy against their Homologous Tumor. Advanced Science, 2021, 8, 2002787.	5.6	38
68	The orchestration of cellular and humoral responses is facilitated by divergent intracellular antigen trafficking in nanoparticle-based therapeutic vaccine. Pharmacological Research, 2012, 65, 189-197.	3.1	35
69	Molecular structure matters: PEC-b-PLA nanoparticles with hydrophilicity and deformability demonstrate their advantages for high-performance delivery of anti-cancer drugs. Journal of Materials Chemistry B, 2013, 1, 3239.	2.9	35
70	The molecular mechanism of robust macrophage immune responses induced by PEGylated molybdenum disulfide. Nanoscale, 2019, 11, 22293-22304.	2.8	35
71	Enhancing therapeutic performance of personalized cancer vaccine via delivery vectors. Advanced Drug Delivery Reviews, 2021, 177, 113927.	6.6	34

Wei Wei

#	Article	IF	CITATIONS
73	mPEG-PLA microspheres with narrow size distribution increase the controlled release effect of recombinant human growth hormone. Journal of Materials Chemistry, 2011, 21, 12691.	6.7	32
74	Cell Membrane Camouflaged Hydrophobic Drug Nanoflake Sandwiched with Photosensitizer for Orchestration of Chemoâ€Photothermal Combination Therapy. Small, 2019, 15, e1805544.	5.2	30
75	Experimental and theoretical explorations of nanocarriers' multistep delivery performance for rational design and anticancer prediction. Science Advances, 2021, 7, .	4.7	30
76	In Situ Generation of Gold Nanoparticles on Bacteriaâ€Derived Magnetosomes for Imagingâ€Guided Starving/Chemodynamic/Photothermal Synergistic Therapy against Cancer. Advanced Functional Materials, 2022, 32, .	7.8	24
77	Shielding Ferritin with a Biomineralized Shell Enables Efficient Modulation of Tumor Microenvironment and Targeted Delivery of Diverse Therapeutic Agents. Advanced Materials, 2022, 34, e2107150.	11.1	24
78	Chemical modification and characterization of gigaporous polystyrene microspheres as rapid separation of proteins base supports. Journal of Polymer Science Part A, 2008, 46, 5794-5804.	2.5	23
79	Bio-inspired protein–gold nanoconstruct with core–void–shell structure: beyond a chemo drug carrier. Journal of Materials Chemistry B, 2013, 1, 3136-3143.	2.9	22
80	Amplifying Nanoparticle Targeting Performance to Tumor via Diels–Alder Cycloaddition. Advanced Functional Materials, 2018, 28, 1707596.	7.8	22
81	In situ growth of nano-antioxidants on cellular vesicles for efficient reactive oxygen species elimination in acute inflammatory diseases. Nano Today, 2021, 40, 101282.	6.2	22
82	Higher Order Protein Catenation Leads to an Artificial Antibody with Enhanced Affinity and In Vivo Stability. Journal of the American Chemical Society, 2021, 143, 18029-18040.	6.6	22
83	Choice of Nanovaccine Delivery Mode Has Profound Impacts on the Intralymph Node Spatiotemporal Distribution and Immunotherapy Efficacy. Advanced Science, 2020, 7, 2001108.	5.6	21
84	Shape Designed Implanted Drug Delivery System for <i>In Situ</i> Hepatocellular Carcinoma Therapy. ACS Nano, 2022, 16, 8493-8503.	7.3	21
85	Engineering magnetosomes with chimeric membrane and hyaluronidase for efficient delivery of HIF-1 siRNA into deep hypoxic tumors. Chemical Engineering Journal, 2020, 398, 125453.	6.6	20
86	Breaching the Hyaluronan Barrier with PH20â€Fc Facilitates Intratumoral Permeation and Enhances Antitumor Efficiency: A Comparative Investigation of Typical Therapeutic Agents in Different Nanoscales. Advanced Healthcare Materials, 2016, 5, 2872-2881.	3.9	19
87	Single-Chromophore-Based Therapeutic Agent Enables Green-Light-Triggered Chemotherapy and Simultaneous Photodynamic Therapy to Cancer Cells. ACS Applied Bio Materials, 2019, 2, 3068-3076.	2.3	19
88	Advances of bacteria-based delivery systems for modulating tumor microenvironment. Advanced Drug Delivery Reviews, 2022, 188, 114444.	6.6	18
89	Functional gigaporous polystyrene microspheres facilitating separation of poly(ethylene) Tj ETQq1 1 0.78431	4 rgBT /Over 2.6	lock 10 Tf 50

Transformable vesicles for cancer immunotherapy. Advanced Drug Delivery Reviews, 2021, 179, 113905.

6.6 16

WEI WEI

#	Article	IF	CITATIONS
91	Recent Advances in Particulate Adjuvants for Cancer Vaccination. Advanced Therapeutics, 2020, 3, 1900115.	1.6	15
92	Facile method for CLSM imaging unfunctionalized Au nanoparticles through fluorescent channels. Journal of Nanoparticle Research, 2009, 11, 1219-1225.	0.8	14
93	Preparation of Uniform Microspheres and Microcapsules by Modified Emulsification Process. Macromolecular Symposia, 2010, 288, 41-48.	0.4	14
94	Effect of solubilization of surfactant aggregates on pore structure in gigaporous polymeric particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 384, 549-554.	2.3	14
95	Direct low-temperature synthesis of ultralong persistent luminescence nanobelts based on a biphasic solution-chemical reaction. Chinese Chemical Letters, 2018, 29, 1641-1644.	4.8	14
96	Lymph Node-Targeting Nanovaccine through Antigen-CpG Self-Assembly Potentiates Cytotoxic T Cell Activation. Journal of Immunology Research, 2018, 2018, 1-10.	0.9	14
97	<i>In vivo</i> immunological response of exposure to PEGylated graphene oxide <i>via</i> intraperitoneal injection. Journal of Materials Chemistry B, 2020, 8, 6845-6856.	2.9	14
98	Two-step tumor-targeting therapy <i>via</i> integrating metabolic lipid-engineering with <i>in situ</i> click chemistry. Biomaterials Science, 2020, 8, 2283-2288.	2.6	12
99	Investigation on the Uniformity and Stability of Sunflower Oil/Water Emulsions Prepared by a Shirasu Porous Glass Membrane. Industrial & Engineering Chemistry Research, 2008, 47, 6412-6417.	1.8	11
100	Mechanical determination of particle–cell interactions and the associated biomedical applications. Journal of Materials Chemistry B, 2018, 6, 7129-7143.	2.9	9
101	Exosomes: The Indispensable Messenger in Tumor Pathogenesis and the Rising Star in Antitumor Applications. Advanced Biology, 2019, 3, e1900008.	3.0	8
102	Oral delivery of protein and anticancer drugs by uniform-sized chitosan micro/nanoparticles with autofluorescent property. Journal of Controlled Release, 2015, 213, e111.	4.8	6
103	Design and preparation of chimeric hyaluronidase as a chaperone for the subcutaneous administration of biopharmaceuticals. Biochemical Engineering Journal, 2016, 112, 32-41.	1.8	6
104	A Highâ€Resolution Ternary Model Demonstrates How PEGylated 2D Nanomaterial Stimulates Integrin <i>î±</i> _v <i>β</i> ₈ on Cell Membrane. Advanced Science, 2021, 8, e2004506.	5.6	6
105	Recent advances in platelet engineering for anti-cancer therapies. Particuology, 2022, 64, 2-13.	2.0	5
106	Applications of Calcium-Based Nanomaterials in Osteoporosis Treatment. ACS Biomaterials Science and Engineering, 2022, 8, 424-443.	2.6	4
107	Towards A Deeper Understanding of the Interfacial Adsorption of Enzyme Molecules in Gigaporous Polymeric Microspheres. Polymers, 2016, 8, 116.	2.0	1
108	Principles of regulating particle multiscale structures for controlling particle-cell interaction process. Chemical Engineering Science, 2021, 232, 116343.	1.9	1

#	Article	IF	CITATIONS
109	Arsenene: A Potential Therapeutic Agent for Acute Promyelocytic Leukaemia Cells by Acting on Nuclear Proteins. Angewandte Chemie, 2020, 132, 5189-5196.	1.6	0