Maria Grazia Betti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5384106/publications.pdf

Version: 2024-02-01

175 papers 3,601 citations

147726 31 h-index 50 g-index

178 all docs

178 docs citations

178 times ranked 3742 citing authors

#	Article	IF	CITATIONS
1	Gap Opening in Double-Sided Highly Hydrogenated Free-Standing Graphene. Nano Letters, 2022, 22, 2971-2977.	4.5	9
2	Argon and Other Defects in Amorphous SiO2 Coatings for Gravitational-Wave Detectors. Coatings, 2022, 12, 1001.	1.2	5
3	Tuning the Magnetic Coupling of a Molecular Spin Interface via Electron Doping. Nano Letters, 2021, 21, 666-672.	4.5	8
4	Narrowing of <i>d</i> bands of FeCo layers intercalated under graphene. Applied Physics Letters, 2021, 118, .	1.5	6
5	Effects of the annealing of amorphous Ta2O5 coatings produced by ion beam sputtering concerning the effusion of argon and the chemical composition. Journal of Non-Crystalline Solids, 2021, 557, 120651.	1.5	10
6	High thermal stability of anti-ferromagnetic coupled molecules with FeCo layers. AIP Advances, 2021, 11, 075302.	0.6	0
7	Borocarbonitride Layers on Titanium Dioxide Nanoribbons for Efficient Photoelectrocatalytic Water Splitting. Materials, 2021, 14, 5490.	1.3	4
8	Magnetic response and electronic states of well defined Graphene/Fe/Ir(111) heterostructure. Physical Review Materials, 2021, 5 , .	0.9	4
9	Deuterium Adsorption on Free-Standing Graphene. Nanomaterials, 2021, 11, 130.	1.9	14
10	Towards free-standing graphane: atomic hydrogen and deuterium bonding to nano-porous graphene. Nanotechnology, 2021, 32, 035707.	1.3	12
11	Ultrathin Transparent B–C–N Layers Grown on Titanium Substrates with Excellent Electrocatalytic Activity for the Oxygen Evolution Reaction. ACS Applied Energy Materials, 2020, 3, 1922-1932.	2.5	16
12	Strong ferromagnetic coupling and tunable easy magnetization directions of FexCo1â^'x layer(s) intercalated under graphene. Applied Surface Science, 2020, 527, 146599.	3.1	5
13	Carbon nanotubes as anisotropic target for dark matter. Journal of Physics: Conference Series, 2020, 1468, 012232.	0.3	9
14	Empty electron states in cobalt-intercalated graphene. Journal of Chemical Physics, 2020, 153, 214703.	1.2	4
15	Insight into the electronic structure of semiconducting <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>îµ</mml:mi><mml:mtext>a^²</mml:mtext><mm <mml:math="" and="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>îµ</mml:mi><mml:mtext>a^²</mml:mtext><mm< td=""><td>0.9</td><td>4</td></mm<></mm></mml:math>	0.9	4
16	Physical Review Materials, 2020, 4, . Polarization Effects of Transversal and Longitudinal Optical Phonons in Bundles of Multiwall Carbon Nanotubes. Journal of Physical Chemistry C, 2019, 123, 20013-20019.	1.5	4
17	Neutrino physics with the PTOLEMY project: active neutrino properties and the light sterile case. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 047-047.	1.9	85
18	A fast synthesis route of boron–carbon–nitrogen ultrathin layers towards highly mixed ternary B–C–N phases. 2D Materials, 2019, 6, 035015.	2.0	10

#	Article	IF	CITATIONS
19	A design for an electromagnetic filter for precision energy measurements at the tritium endpoint. Progress in Particle and Nuclear Physics, 2019, 106, 120-131.	5.6	24
20	Metal phthalocyanines interaction with Co mediated by a moir \tilde{A} graphene superlattice. Journal of Chemical Physics, 2019, 150, 054704.	1.2	8
21	An experimental and theoretical study of metallorganic coordination networks of tetrahydroxyquinone on Cu(111). New Journal of Chemistry, 2019, 43, 19186-19192.	1.4	3
22	Corrugated graphene exposes the limits of a widely used ab initio van der Waals DFT functional. Physical Review Materials, 2019, 3, .	0.9	2
23	Topology and doping effects in three-dimensional nanoporous graphene. Carbon, 2018, 131, 258-265.	5.4	41
24	Ferromagnetic and Antiferromagnetic Coupling of Spin Molecular Interfaces with High Thermal Stability. Nano Letters, 2018, 18, 2268-2273.	4.5	35
25	Graphene-mediated interaction between FePc and intercalated cobalt layers. Applied Surface Science, 2018, 432, 2-6.	3.1	8
26	Chemical vapor deposition growth of boron–carbon–nitrogen layers from methylamine borane thermolysis products. Nanotechnology, 2018, 29, 025603.	1.3	21
27	Superexchange pathways stabilize the magnetic coupling of MnPc with Co in a spin interface mediated by graphene. Physical Review B, 2018, 98, .	1.1	13
28	Channelling and induced defects at ion-bombarded aligned multiwall carbon nanotubes. Carbon, 2018, 139, 768-775.	5.4	24
29	Three-dimensional microporous graphene decorated with lithium. Nanotechnology, 2018, 29, 405707.	1.3	1
30	High quality epitaxial graphene by hydrogen-etching of 3C-SiC(111) thin-film on Si(111). Nanotechnology, 2017, 28, 115601.	1.3	11
31	FePc Adsorption on the Moir \tilde{A} © Superstructure of Graphene Intercalated with a Cobalt Layer. Journal of Physical Chemistry C, 2017, 121, 1639-1647.	1.5	25
32	Mixing of MnPc electronic states at the MnPc/Au(110) interface. Journal of Chemical Physics, 2017, 147, 134702.	1.2	4
33	Two-Dimensional Hallmark of Highly Interconnected Three-Dimensional Nanoporous Graphene. ACS Omega, 2017, 2, 3691-3697.	1.6	32
34	A long-range ordered array of copper tetrameric units embedded in an on-surface metal organic framework. Journal of Chemical Physics, 2017, 147, 214706.	1.2	6
35	Orbital Symmetry of the Kondo State in Adsorbed FePc Molecules on the Au(110) Metal Surface. Journal of Physical Chemistry C, 2016, 120, 28527-28532.	1.5	6
36	In-vacuum thermolysis of ethane 1,2-diamineborane for the synthesis of ternary borocarbonitrides. Nanotechnology, 2016, 27, 435601.	1.3	17

3

#	Article	IF	Citations
37	Effect of substrate polishing on the growth of graphene on 3C–SiC(111)/Si(111) by high temperature annealing. Nanotechnology, 2016, 27, 185601.	1.3	7
38	Electronic Structure Evolution during the Growth of Graphene Nanoribbons on Au(110). Journal of Physical Chemistry C, 2016, 120, 7323-7331.	1.5	16
39	Graphene nanoribbons synthesized from molecular precursor polymerization on Au(110). AIP Conference Proceedings, 2015, , .	0.3	2
40	Synthesis of Ternary Borocarbonitrides by High Temperature Pyrolysis of Ethane 1,2-Diamineborane. Materials, 2015, 8, 5974-5985.	1.3	13
41	Surface-Assisted Reactions toward Formation of Graphene Nanoribbons on Au(110) Surface. Journal of Physical Chemistry C, 2015, 119, 2427-2437.	1.5	57
42	Graphene-Induced Magnetic Anisotropy of a Two-Dimensional Iron Phthalocyanine Network. Journal of Physical Chemistry Letters, 2015, 6, 1690-1695.	2.1	25
43	Thermal stability and reduction of iron oxide nanowires at moderate temperatures. Beilstein Journal of Nanotechnology, 2014, 5, 323-328.	1.5	7
44	Fe2O3 nanowires on HOPG as precursor of new carbon-based anode for high-capacity lithium ion batteries. , 2014 , , .		1
45	Reduction phases of thin iron-oxide nanowires upon thermal treatment and Li exposure. Journal of Applied Physics, $2014,115,$.	1.1	0
46	Metal-phthalocyanine ordered layers on Au(110): Metal-dependent adsorption energy. Journal of Chemical Physics, 2014, 140, 244704.	1.2	43
47	Electronic structure of graphene/Co interfaces. Physical Review B, 2014, 90, .	1.1	41
48	Interaction of iron phthalocyanine with the graphene/Ni(111) system. Beilstein Journal of Nanotechnology, 2014, 5, 308-312.	1.5	22
49	Electrochemical characteristics of iron oxide nanowires during lithium-promoted conversion reaction. Journal of Power Sources, 2014, 256, 133-136.	4.0	24
50	An Advanced Lithium-lon Battery Based on a Graphene Anode and a Lithium Iron Phosphate Cathode. Nano Letters, 2014, 14, 4901-4906.	4.5	402
51	Energetics and Hierarchical Interactions of Metal–Phthalocyanines Adsorbed on Graphene/Ir(111). Langmuir, 2013, 29, 10440-10447.	1.6	43
52	Spin and orbital configuration of metal phthalocyanine chains assembled on the Au(110) surface. Physical Review B, 2013, 87, .	1.1	67
53	Graphene-Induced Substrate Decoupling and Ideal Doping of a Self-Assembled Iron-phthalocyanine Single Layer. Journal of Physical Chemistry C, 2013, 117, 3019-3027.	1.5	71
54	Orbital dependent Rashba splitting and electron-phonon coupling of 2D Bi phase on Cu(100) surface. Journal of Chemical Physics, 2013, 139, 184707.	1.2	4

#	Article	IF	Citations
55	Charge transfer between isomer domains on n+-doped Si(111)-2 \tilde{A} — 1: energetic stabilization. Journal of Physics Condensed Matter, 2012, 24, 354009.	0.7	5
56	Molecule-Driven Substrate Reconstruction in the Two-Dimensional Self-Organization of Fe-Phthalocyanines on Au(110). Journal of Physical Chemistry C, 2012, 116, 6251-6258.	1.5	38
57	Formation of Hybrid Electronic States in FePc Chains Mediated by the Au(110) Surface. Journal of Physical Chemistry C, 2012, 116, 8657-8663.	1.5	20
58	Structural Phases of Ordered FePc-Nanochains Self-Assembled on Au(110). Langmuir, 2012, 28, 13232-13240.	1.6	26
59	Nonenzymatic Ligation of an RNA Oligonucleotide Analyzed by Atomic Force Microscopy. Journal of Physical Chemistry B, 2011, 115, 6296-6303.	1.2	10
60	Potassium-doped FePc thin-film on metal surfaces: observation of different empty state occupation. Journal of Nanoparticle Research, 2011, 13, 5967-5973.	0.8	6
61	Metal-phthalocyanine array on the moir \tilde{A} pattern of a graphene sheet. Journal of Nanoparticle Research, 2011, 13, 6013-6020.	0.8	33
62	Coexistence of Negatively and Positively Buckled Isomers onn+-DopedSi(111)â^2A—1. Physical Review Letters, 2011, 106, 067601.	2.9	27
63	Metal-phthalocyanine chains on the Au(110) surface: Interaction states versus <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>d</mml:mi></mml:math> -metal states occupancy. Physical Review B, 2010, 81, .	1.1	90
64	Localized and Dispersive Electronic States at Ordered FePc and CoPc Chains on Au(110). Journal of Physical Chemistry C, 2010, 114, 21638-21644.	1.5	91
65	Bi ordered phases on Cu(100): Periodic arrays of dislocations influence the electronic properties. Journal of Chemical Physics, 2010, 132, 174706.	1.2	2
66	Control of Electron Injection Barrier by Electron Doping of Metal Phthalocyanines. Journal of Physical Chemistry C, 2010, 114, 12258-12264.	1.5	27
67	Filling empty states in a CuPc single layer on the Au(110) surface via electron injection. Physical Review B, 2009, 79, .	1.1	38
68	Characterization of benzenethiolate self-assembled monolayer on Cu(100) by XPS and NEXAFS. Journal of Electron Spectroscopy and Related Phenomena, 2009, 172, 64-68.	0.8	25
69	Electronic states of CuPc chains on the Au(110) surface. Journal of Chemical Physics, 2009, 131, 174710.	1.2	58
70	Dispersion of surface bands and chain coupling at Si and Ge(111) surfaces. Surface Science, 2008, 602, 1423-1427.	0.8	3
71	The local adsorption geometry of benzenethiolate on Cu(100). Surface Science, 2008, 602, 2453-2462.	0.8	16
72	Defect-induced states in the electronic structure of a Cu(100)-benzenethiolate-pentacene heterostructure. Journal of Applied Physics, 2008, 104, 063720.	1.1	3

#	Article	lF	CITATIONS
73	Molecular charge distribution and dispersion of electronic states in the contact layer between pentacene and $Cu(119)$ and beyond. Physical Review B, 2008, 77, .	1.1	16
74	Interaction strength and molecular orientation of a single layer of pentacene in organic-metal interface and organic-organic heterostructure. Physical Review B, 2008, 77, .	1.1	33
75	Barrier Formation at Organic Interfaces in a Cu(100)-benzenethiolate-pentacene Heterostructure. Physical Review Letters, 2008, 100, 027601.	2.9	66
76	Insulating state of electron-doped Cu-phthalocyanine layers. Physical Review B, 2007, 76, .	1.1	15
77	Mixing of Electronic States in Pentacene Adsorption on Copper. Physical Review Letters, 2007, 99, 046802.	2.9	132
78	Symmetry lowering of pentacene molecular states interacting with a Cu surface. Physical Review B, 2007, 76, .	1.1	26
79	Electronic States of a Single Layer of Pentacene:  Standing-Up and Flat-Lying Configurations. Journal of Physical Chemistry A, 2007, 111, 12454-12457.	1.1	33
80	Pentacene Grown on Self-Assembled Monolayer:  Adsorption Energy, Interface Dipole, and Electronic Properties. Journal of Physical Chemistry C, 2007, 111, 286-293.	1.5	29
81	Anchoring sulphur-headgroup organic molecules at Cu(100): Tailoring the interface electronic states. Surface Science, 2007, 601, 2580-2583.	0.8	1
82	Molecule–metal interaction of pentacene on copper vicinal surfaces. Surface Science, 2007, 601, 2603-2606.	0.8	37
83	Self organization of pentacene grown on Cu(119). Surface Science, 2007, 601, 4242-4245.	0.8	31
84	Molecular gap and energy level diagram for pentacene adsorbed on filled d-band metal surfaces. Applied Physics Letters, 2006, 89, 152119.	1.5	30
85	Adsorption of pentacene on filled d-band metal surfaces: Long-range ordering and adsorption energy. Journal of Chemical Physics, 2006, 124, 154702.	1.2	38
86	Growth of long range ordered pentacene/benzenethiol/Cu(100) heterostructure. European Physical Journal Special Topics, 2006, 132, 301-305.	0.2	5
87	Morphology of pentacene films deposited on Cu(119) vicinal surface. Applied Surface Science, 2006, 252, 5568-5571.	3.1	10
88	Anchoring methane thiol on Cu(100) in different structural configurations: Electronic state dispersion. Physical Review B, 2006, 74, .	1.1	12
89	Long-range-ordered pentacene chains assembled on the $Cu(119)$ vicinal surface. Physical Review B, 2005, 72, .	1.1	49
90	Core-shell photoabsorption and photoelectron spectra of gas-phase pentacene: Experiment and theory. Journal of Chemical Physics, 2005, 122, 124305.	1.2	83

#	Article	IF	CITATIONS
91	Anchoring of Organic Molecules on Cu(001) Surface Through S-Headgroup Materials Research Society Symposia Proceedings, 2005, 872, 1.	0.1	O
92	Atomic topography and self-assembly of one-dimensional potassium chains on the InAs (110) surface. Physical Review B, 2004, 70, .	1.1	7
93	Structural and electronic properties of one dimensional inorganic and organic structures on surfaces. Microelectronic Engineering, 2004, 76, 235-240.	1.1	O
94	Copper-phthalocyanine ultra thin films grown onto Al $(1\ 0\ 0)$ surface investigated by synchrotron radiation. Journal of Electron Spectroscopy and Related Phenomena, 2004, 137-140, 165-169.	0.8	34
95	Au(110) induced reconstruction by π conjugated molecules adsorption investigated by photoemission spectroscopy and low energy electron diffraction. Surface Science, 2004, 566-568, 79-83.	0.8	27
96	Surface-science approach to the study of mercaptobenzoxazole on Cu(100). Surface Science, 2004, 566-568, 579-584.	0.8	3
97	Electronic structure of methanethiolate self-assembled on the Cu(100) surface. Surface Science, 2004, 566-568, 591-596.	0.8	12
98	Electronic structure of long-range ordered pentacene structures on the stepped Cu(119) surface. Surface Science, 2004, 566-568, 613-617.	0.8	18
99	Quasi-1D pentacene structures assembled on the vicinal Cu(119) surface. Surface Science, 2004, 566-568, 624-627.	0.8	18
100	Quasi–one-dimensional electronic state of alkali metal chains assembled on the InAs(110) surface. Europhysics Letters, 2004, 68, 254-260.	0.7	0
101	Self-assembling of potassium nanostructures on InAs(110) surface. Surface Science, 2003, 532-535, 666-670.	0.8	9
102	Growth morphology and electronic structure of 2D ordered pentacene on the Au()-(1×2) surface. Surface Science, 2003, 532-535, 249-254.	0.8	46
103	CuPc molecules adsorbed on Au(110)-($1\tilde{A}$ —2): growth morphology and evolution of valence band states. Surface Science, 2003, 531, 123-130.	0.8	42
104	HREELS study of the adsorption mechanism and orientational order of 2-mercaptobenzoxazole on Cu(100). Surface Science, 2003, 539, 63-71.	0.8	21
105	Potassium assembled on the InAs(1 10) surface: from nanowires to two-dimensional layers. Applied Surface Science, 2003, 212-213, 47-51.	3.1	4
106	Pentacene self-aggregation at the Au(110)-($1\tilde{A}$ —2) surface: growth morphology and interface electronic states. Thin Solid Films, 2003, 428, 227-231.	0.8	49
107	Photoemission investigation of the alkali-metal-induced two-dimensional electron gas at the Si(111)(1Å -1):Hsurface. Physical Review B, 2003, 67, .	1.1	5
108	Cu(100) surface:â€,â€,High-resolution experimental and theoretical band mapping. Physical Review B, 2003, 68, .	1.1	37

#	Article	IF	CITATIONS
109	Electronic band states of long-range ordered aromatic thione molecules assembled on Cu(100). Physical Review B, 2002, 66, .	1.1	28
110	Atomic geometry and the probability distribution of self-assembled Cs nanowires at the InAs (110) surface. Physical Review B, 2002, 66 , .	1.1	9
111	Growth of 2-mercaptobenzoxazole on Cu() surface: chemisorbed and physisorbed phases. Surface Science, 2002, 507-510, 7-11.	0.8	15
112	Growth morphology of $(1\tilde{A}-2)$ \hat{l}_{\pm} -Sn(100): a surface diffraction study. Surface Science, 2002, 507-510, 335-339.	0.8	3
113	Women in Physics in Italy: The Leaky Pipeline. AIP Conference Proceedings, 2002, , .	0.3	0
114	Sn on InSb(100)–c(2×8): growth morphology and electronic structure. Journal of Electron Spectroscopy and Related Phenomena, 2002, 127, 29-35.	0.8	7
115	Adsorption sites at Cs nanowires grown on the InAs(110) surface. Surface Science, 2001, 477, 35-42.	0.8	12
116	Single-particle and collective excitations of a two-dimensional electron gas at the Cs/InAs(110) surface. Physical Review B, 2001, 64, .	1.1	5
117	Density of states of a two-dimensional electron gas at semiconductor surfaces. Physical Review B, 2001, 63, .	1.1	45
118	SELF-ASSEMBLING ALKALI NANOWIRES AT SEMICONDUCTOR SURFACES., 2001,,.		0
119	Occupied surface-state bands of the $(1\tilde{A}-2)$ ordered phase of Bi/InAs (110) . Journal of Physics Condensed Matter, 2000, 12, 7721-7726.	0.7	3
120	Metal-induced gap states at InAs(110) surface. Surface Science, 2000, 454-456, 539-542.	0.8	10
121	The pseudomorphic growth of \hat{l}_{\pm} -Sn on InSb(100): electronic structure and morphological properties. Surface Science, 2000, 454-456, 807-810.	0.8	5
122	α-Sn pseudomorphic growth on InSb (111) and () surfaces: a high-resolution photoemission study. Surface Science, 2000, 463, 174-182.	0.8	20
123	Evolution of one-dimensional Cs chains on InAs(110) as determined by scanning-tunneling microscopy and core-level spectroscopy. Surface Science, 2000, 447, 133-142.	0.8	27
124	A high-resolution spectroscopy study on bidimensional ordered structures: the (1 \tilde{A} — 1) and (1 \tilde{A} — 2) phases of Bi/InAs(110). Journal of Physics Condensed Matter, 1999, 11, 7447-7461.	0.7	5
125	Diffraction analysis of a disordered surface, modelled on a probability distribution of reconstructed blocks: ,n= 6.45. Journal of Physics Condensed Matter, 1999, 11, 1935-1951.	0.7	5
126	(1×2)Bi chain reconstruction on the InAs(110) surface. Physical Review B, 1999, 59, 15760-15765.	1.1	12

#	Article	IF	CITATIONS
127	Density of states of a two-dimensional electron gas measured by high-resolution photoelectron spectroscopy. Solid State Communications, 1999, 110, 661-666.	0.9	15
128	Growth morphology and electronic properties of Sn deposited on different InSb surfaces. Surface Science, 1999, 433-435, 387-391.	0.8	7
129	Electronic properties of the Bi/Si(100) interface. Surface Science, 1998, 409, 207-212.	0.8	6
130	Gap-state formation in two-dimensional ordered Bi layers on InAs(110). Physical Review B, 1998, 58, R4231-R4234.	1.1	13
131	Antimony adsorption on InAs(110). Physical Review B, 1998, 57, 4544-4551.	1.1	7
132	2D cesium insulating layer deposited on Sb-precovered GaAs(110) surface. Surface Science, 1997, 377-379, 210-214.	0.8	0
133	Electronic properties of (2 \tilde{A} — n)-Bi reconstructions on Si(100). Surface Science, 1997, 377-379, 215-219.	0.8	7
134	Dynamics of the Si(100) surface. Surface Science, 1997, 377-379, 360-364.	0.8	12
135	Surface modification of InAs(110) surface by low energy ion sputtering. Surface Science, 1997, 391, 73-80.	0.8	16
136	Dynamics-Induced Surface Metallization of Si(100). Physical Review Letters, 1996, 77, 3869-3872.	2.9	44
137	Cesium-induced electronic states and space-charge-layer formation in Cs/InSb(110) interface. Physical Review B, 1996, 53, 13605-13612.	1.1	21
138	Surface electronic structure at $Si(100)$ - $(2x1)$. Journal of Electron Spectroscopy and Related Phenomena, 1995, 76, 541-545.	0.8	10
139	Space charge layer at interfaces. Journal of Electron Spectroscopy and Related Phenomena, 1995, 76, 459-463.	0.8	0
140	Electronic properties of (1xn)-reconstructed interfaces. Journal of Electron Spectroscopy and Related Phenomena, 1995, 76, 465-469.	0.8	4
141	Overlayer growth and electronic properties of the Bi/GaSb(110) interface. Physical Review B, 1995, 51, 16822-16831.	1.1	10
142	Quasi-Two-Dimensional Electron Gas at Submonolayer Coverages of Cs on InSb(110). Europhysics Letters, 1995, 32, 235-240.	0.7	14
143	Bismuth-induced electronic states at $(2 \text{ Å}-1)$ -Bi/III-V(110) interfaces. Surface Science, 1995, 331-333, 496-500.	0.8	5
144	Space-charge layer, metallization, and collective excitations of the Bi/GaAs(110) interface. Physical Review B, 1994, 49, 8198-8205.	1.1	8

#	Article	IF	Citations
145	Epitaxial continued-layer structure of Sb on GaAs(110) as observed by grazing-incidence x-ray diffraction. Physical Review B, 1994, 50, 14336-14339.	1.1	23
146	Bismuth on GaSb(110): Electronic and dielectric properties. Physical Review B, 1994, 49, 2911-2914.	1.1	11
147	Structural analysis of the $(1\tilde{A}-1)$ -Bi/GaAs (110) interface. Physical Review B, 1994, 50, 8004-8007.	1.1	10
148	Electronic and dielectric properties of Bi grown on GaAs(110). Surface Science, 1993, 287-288, 550-553.	0.8	2
149	Quantum size effects and temperature dependence of low-energy electronic excitations in thin Bi crystals. Physical Review B, 1993, 48, 4767-4776.	1.1	25
150	Bismuth and antimony on GaAs(110): Dielectric and electronic properties. Physical Review B, 1992, 45, 14057-14064.	1.1	26
151	Bi-induced electronic states at the interface with n- and p-type GaAs(110). Applied Surface Science, 1992, 56-58, 242-246.	3.1	5
152	Antimony induced states in Sb/InP(110) and Sb/GaAs(110) interfaces studied by high resolution electron energy loss spectroscopy. Surface Science, 1991, 251-252, 209-212.	0.8	6
153	Core level electron energy loss study of the PD-SI(111)2 \tilde{A} — 1 Interface Formation. Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics, 1991, 13, 203-210.	0.4	0
154	Inelastic-electron-scattering investigation of clean and hydrogen-exposed InP(110) surfaces. Physical Review B, 1991, 43, 9818-9822.	1.1	7
155	Cation surface excitons in Sb/III-V interfaces. Physical Review B, 1991, 43, 9070-9075.	1.1	6
156	Antimony-induced electronic states in the Sb/InP(110) interface studied by high-resolution electron-energy-loss spectroscopy. Physical Review B, 1991, 43, 14317-14320.	1.1	11
157	HREELS investigation of clean and hydrogen-InP(110) surfaces. Vacuum, 1990, 41, 660-662.	1.6	7
158	Vibrational structure of Sb/III-V compound semiconductors interfaces. Journal of Electron Spectroscopy and Related Phenomena, 1990, 54-55, 1105-1114.	0.8	7
159	High resolution electron energy loss spectroscopy study of the SbGaAs(110) system. Vacuum, 1990, 41, 695-698.	1.6	4
160	Inelastic electron scattering investigation of the Sb/GaAs(110) system. Physical Review B, 1990, 41, 11978-11991.	1.1	29
161	Azimuthal dependence of the vibrational excitation in Si(111)-($2\tilde{A}$ –1). Physical Review B, 1989, 39, 10380-10383.	1.1	16
162	Observation of a new mode in the energy-loss spectrum of the Sb/GaAs(110) system. Physical Review B, 1989, 40, 8095-8098.	1.1	12

#	Article	IF	CITATIONS
163	Collective and vibrational excitations on then-doped GaAs(110) surface. Physical Review B, 1989, 39, 5887-5891.	1.1	31
164	Surface phonons and plasmons of GaAs(110) investigated by high resolution electron energy loss spectroscopy. Surface Science, 1989, 211-212, 557-564.	0.8	17
165	Electronic and vibrational properties of the K/GaAs system. Surface Science, 1989, 211-212, 659-665.	0.8	8
166	Azimuthal dependence of the electronic excitations in GaAs(110). Surface Science, 1988, 207, 133-141.	0.8	25
167	Photoabsorption Spectroscopy of CrSi 2 : An Investigation of Unoccupied States. Europhysics Letters, 1988, 5, 283-286.	0.7	2
168	Empty states investigation of Ni2Si by photon absorption spectroscopy. Physica Scripta, 1987, 36, 153-155.	1.2	7
169	Electron energyâ€loss spectroscopy investigation of core levels and valence excitations of Pd2Si. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1987, 5, 1474-1478.	0.9	4
170	Local structure of Ni2Si. Journal of Electron Spectroscopy and Related Phenomena, 1987, 42, 287-292.	0.8	1
171	Electron energy-loss spectroscopy of Ni2Si: Valence collective excitation and structural properties. Surface Science, 1986, 168, 204-211.	0.8	8
172	Core and valence excitations in Ni2Si. Thin Solid Films, 1986, 140, 99-104.	0.8	1
173	Azimuthal dependence of reflection high resolution electron energy loss of Si(111)(2×1). Solid State Communications, 1986, 60, 337-341.	0.9	27
174	L2,3absorption edges inNi2Si. Physical Review B, 1986, 34, 2875-2877.	1.1	17
175	2D MoS 2 Heterostructures on Epitaxial and Selfâ€Standing Graphene for Energy Storage: From Growth Mechanism to Application. Advanced Materials Technologies, 0, , 2100963.	3.0	1