Carlos David Grande Tovar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5383817/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Potential of Selected Agri-Food Loss and Waste to Contribute to a Circular Economy: Applications in the Food, Cosmetic and Pharmaceutical Industries. Molecules, 2021, 26, 515.	1.7	153
2	Chitosan coatings enriched with essential oils: Effects on fungi involved in fruit decay and mechanisms of action. Trends in Food Science and Technology, 2018, 78, 61-71.	7.8	146
3	Synthesis and Application of Scaffolds of Chitosan-Graphene Oxide by the Freeze-Drying Method for Tissue Regeneration. Molecules, 2018, 23, 2651.	1.7	105
4	Traditional Fermented Foods and Beverages from a Microbiological and Nutritional Perspective: The Colombian Heritage. Comprehensive Reviews in Food Science and Food Safety, 2014, 13, 1031-1048.	5.9	102
5	The Effect of Edible Chitosan Coatings Incorporated with Thymus capitatus Essential Oil on the Shelf-Life of Strawberry (Fragaria x ananassa) during Cold Storage. Biomolecules, 2018, 8, 155.	1.8	85
6	Antimicrobial Films Based on Nanocomposites of Chitosan/Poly(vinyl alcohol)/Graphene Oxide for Biomedical Applications. Biomolecules, 2019, 9, 109.	1.8	84
7	Chitosan Crossâ€Linked Graphene Oxide Nanocomposite Films with Antimicrobial Activity for Application in Food Industry. Macromolecular Symposia, 2017, 374, 1600114.	0.4	72
8	Surface-Grafted Polymers from Electropolymerized Polythiophene RAFT Agent. Macromolecules, 2011, 44, 966-975.	2.2	70
9	Recovery of Banana Waste-Loss from Production and Processing: A Contribution to a Circular Economy. Molecules, 2021, 26, 5282.	1.7	68
10	Electrochemical Deposition and Surface-Initiated RAFT Polymerization: Protein and Cell-Resistant PPEGMEMA Polymer Brushes. Biomacromolecules, 2010, 11, 3422-3431.	2.6	67
11	Photocatalytic activity of graphene oxide–TiO ₂ thin films sensitized by natural dyes extracted from <i>Bactris guineensis</i> . Royal Society Open Science, 2019, 6, 181824.	1.1	66
12	Bio-Removal of Methylene Blue from Aqueous Solution by Galactomyces geotrichum KL20A. Water (Switzerland), 2019, 11, 282.	1.2	54
13	Biodegradation of graphene oxide-polymer nanocomposite films in wastewater. Environmental Science: Nano, 2017, 4, 1808-1816.	2.2	46
14	Novel Bioactive and Antibacterial Acrylic Bone Cement Nanocomposites Modified with Graphene Oxide and Chitosan. International Journal of Molecular Sciences, 2019, 20, 2938.	1.8	42
15	Reduction of Postharvest Quality Loss and Microbiological Decay of Tomato "Chonto―(Solanum) Tj ETQq1 Polymers, 2020, 12, 1822.	1 0.78431 2.0	4 rgBT /Ov <mark>er</mark> 38
16	Optimization of Chitosan Glutaraldehyde-Crosslinked Beads for Reactive Blue 4 Anionic Dye Removal Using a Surface Response Methodology. Life, 2021, 11, 85.	1.1	34
17	Colletotrichum Gloesporioides Inhibition In Situ by Chitosan-Ruta graveolens Essential Oil Coatings: Effect on Microbiological, Physicochemical, and Organoleptic Properties of Guava (Psidium guajava L.) during Room Temperature Storage. Biomolecules, 2019, 9, 399.	1.8	29
18	Preparation of Chitosan/Poly(Vinyl Alcohol) Nanocomposite Films Incorporated with Oxidized Carbon Nano-Onions (Multi-Layer Fullerenes) for Tissue-Engineering Applications. Biomolecules, 2019, 9, 684.	1.8	26

#	Article	IF	CITATIONS
19	Biocompatible and Antimicrobial Electrospun Membranes Based on Nanocomposites of Chitosan/Poly (Vinyl Alcohol)/Graphene Oxide. International Journal of Molecular Sciences, 2019, 20, 2987.	1.8	23
20	Sub-lethal concentrations of Colombian Austroeupatorium inulifolium (H.B.K.) essential oil and its effect on fungal growth and the production of enzymes. Industrial Crops and Products, 2016, 87, 315-323.	2.5	21
21	Assessment of Chitosan-Rue (Ruta graveolens L.) Essential Oil-Based Coatings on Refrigerated Cape Gooseberry (Physalis peruviana L.) Quality. Applied Sciences (Switzerland), 2020, 10, 2684.	1.3	21
22	Synthesis, Characterization, and Histological Evaluation of Chitosan-Ruta Graveolens Essential Oil Films. Molecules, 2020, 25, 1688.	1.7	21
23	Chitosan films incorporated with Thymus capitatus essential oil: mechanical properties and antimicrobial activity against degradative bacterial species isolated from tuna (Thunnus sp.) and swordfish (Xiphias gladius). Journal of Food Science and Technology, 2018, 55, 4256-4265.	1.4	20
24	Exploring the Bacterial Microbiota of Colombian Fermented Maize Dough "Masa Agria―(Maiz Añejo). Frontiers in Microbiology, 2016, 7, 1168.	1.5	19
25	Grafting of polymers from electrodeposited macro-RAFT initiators on conducting surfaces. Reactive and Functional Polymers, 2011, 71, 938-942.	2.0	18
26	Chitosan/Polyvinyl Alcohol/Tea Tree Essential Oil Composite Films for Biomedical Applications. Polymers, 2021, 13, 3753.	2.0	18
27	RELATIONSHIP BETWEEN REFRACTIVE INDEX AND THYMOL CONCENTRATION IN ESSENTIAL OILS OF Lippia origanoides Kunth. Chilean Journal of Agricultural and Animal Sciences, 2016, 32, 127-133.	0.1	17
28	Evaluation of the Biocompatibility of CS-Graphene Oxide Compounds In Vivo. International Journal of Molecular Sciences, 2019, 20, 1572.	1.8	17
29	Synthesis, Characterization, and Optimization Studies of Starch/Chicken Gelatin Composites for Food-Packaging Applications. Molecules, 2022, 27, 2264.	1.7	17
30	The Role of Chitosan and Graphene Oxide in Bioactive and Antibacterial Properties of Acrylic Bone Cements. Biomolecules, 2020, 10, 1616.	1.8	15
31	Equilibrium and Kinetic Study of Lead and Copper Ion Adsorption on Chitosan-Grafted-Polyacrylic Acid Synthesized by Surface Initiated Atomic Transfer Polymerization. Molecules, 2018, 23, 2218.	1.7	14
32	Acrylic Bone Cements Modified with Graphene Oxide: Mechanical, Physical, and Antibacterial Properties. Polymers, 2020, 12, 1773.	2.0	14
33	Cacao Pod Husk Flour as an Ingredient for Reformulating Frankfurters: Effects on Quality Properties. Foods, 2021, 10, 1243.	1.9	14
34	RAFT "grafting-through―approach to surface-anchored polymers: Electrodeposition of an electroactive methacrylate monomer. European Physical Journal E, 2011, 34, 15.	0.7	13
35	Packham's Triumph Pears (Pyrus communis L.) Post-Harvest Treatment during Cold Storage Based on Chitosan and Rue Essential Oil. Molecules, 2021, 26, 725.	1.7	13
36	Nanoparticle Formation and Ultrathin Film Electrodeposition of Carbazole Dendronized Polynorbornenes Prepared by Ring-Opening Metathesis Polymerization. Langmuir, 2010, 26, 17629-17639.	1.6	12

#	Article	IF	CITATIONS
37	Synthesis of Chitosan Beads Incorporating Graphene Oxide/Titanium Dioxide Nanoparticles for In Vivo Studies. Molecules, 2020, 25, 2308.	1.7	11
38	Nanocomposite Films of Chitosan-Grafted Carbon Nano-Onions for Biomedical Applications. Molecules, 2020, 25, 1203.	1.7	11
39	Biocompatibility Study of Electrospun Nanocomposite Membranes Based on Chitosan/Polyvinyl Alcohol/Oxidized Carbon Nano-Onions. Molecules, 2021, 26, 4753.	1.7	11
40	Chitosan Beads Incorporated with Essential Oil of Thymus capitatus: Stability Studies on Red Tilapia Fillets. Biomolecules, 2019, 9, 458.	1.8	10
41	Synthesis and fabrication of films including graphene oxide functionalized with chitosan for regenerative medicine applications. Heliyon, 2021, 7, e07058.	1.4	10
42	Acrylic Bone Cement Incorporated with Low Chitosan Loadings. Polymers, 2020, 12, 1617.	2.0	9
43	Osseointegration of Antimicrobial Acrylic Bone Cements Modified with Graphene Oxide and Chitosan. Applied Sciences (Switzerland), 2020, 10, 6528.	1.3	8
44	Producción y procesamiento del maÃz en Colombia. Guillermo De Ockham, 2013, 11, 97.	0.2	8
45	Synthesis and Application of a Cationic Polyamine as Yankee Dryer Coating Agent for the Tissue Paper-Making Process. Polymers, 2020, 12, 173.	2.0	7
46	Chitosan Beads Incorporated with Graphene Oxide/Titanium Dioxide Nanoparticles for Removing an Anionic Dye. Applied Sciences (Switzerland), 2021, 11, 9439.	1.3	7
47	Nanocomposites of Chitosan/Graphene Oxide/Titanium Dioxide Nanoparticles/Blackberry Waste Extract as Potential Bone Substitutes. Polymers, 2021, 13, 3877.	2.0	7
48	Influence of the chitosan morphology on the properties of acrylic cements and their biocompatibility. RSC Advances, 2020, 10, 31156-31164.	1.7	6
49	Effect of Pretreatment with Low-Frequency Ultrasound on Quality Parameters in Gulupa (Passiflora) Tj ETQq1 1	0.784314 1.3	rgBT /Overloc
50	Optimization of Mechanical and Setting Properties in Acrylic Bone Cements Added with Graphene Oxide. Applied Sciences (Switzerland), 2021, 11, 5185.	1.3	4
51	Biocompatibility Assessment of Polylactic Acid (PLA) and Nanobioglass (n-BG) Nanocomposites for Biomedical Applications. Molecules, 2022, 27, 3640.	1.7	4
52	2,2′-(Carbonothioyldisulfanediyl)bis(2-methylpropanoic acid). Acta Crystallographica Section E: Structure Reports Online, 2013, 69, o774-o774.	0.2	3
53	Biocompatibility Assessment of Two Commercial Bone Xenografts by In Vitro and In Vivo Methods. Polymers, 2022, 14, 2672.	2.0	3
54	2-Bromo-N-(2-hydroxy-5-methylphenyl)-2-methylpropanamide. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, o2446-o2446.	0.2	2

#	Article	IF	CITATIONS
55	Synthesis and characterization of (6-{[2-(pyridin-2-yl)hydrazinylidene]methyl}pyridin-2-yl)methanol: a supramolecular and topological study. Acta Crystallographica Section C, Structural Chemistry, 2015, 71, 631-635.	0.2	2
56	2-{[(Dodecylsulfanyl)carbonothioyl]sulfanyl}-2-methylpropanoic acid: a chain of edge-fused <i>R</i> ₂ ² (8) and <i>R</i> ₄ ⁴ (20) rings built from O—HO and C—HO hydrogen bonds. Acta Crystallographica Section C: Crystal Structure Communications, 2010, 66, o627-o630.	0.4	1
57	2-(Phenylcarbonothioylsulfanyl)acetic acid. Acta Crystallographica Section E: Structure Reports Online, 2010, 66, o2614-o2614.	0.2	1
58	1,4-Phenylenebis(methylene) bis(9H-carbazole-9-carbodithioate). Acta Crystallographica Section C: Crystal Structure Communications, 2011, 67, 077-079.	0.4	1
59	9-(4-Bromobutyl)-9 <i>H</i> -carbazole. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, o1853-o1853.	0.2	1
60	3,5-Bis(benzyloxy)benzoic acid. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, o3247-o3248.	0.2	1
61	Dataset on in-vitro study of chitosan-graphene oxide films for regenerative medicine. Data in Brief, 2021, 39, 107472.	0.5	1
62	[4-(Allyloxy)phenyl](phenyl)methanone. Acta Crystallographica Section E: Structure Reports Online, 2014, 70, o814-o815.	0.2	0
63	2,2′-(1,4-Phenylene)bis(propane-2,2-diyl) bis(benzodithioate). Acta Crystallographica Section E: Structure Reports Online, 2014, 70, o117-o117.	0.2	0
64	Optimization by Central Composite Experimental Design of the Synthesis of Physically Crosslinked Chitosan Spheres. Biomimetics, 2020, 5, 63.	1.5	0
65	Bionanocompuestos de quitosano-óxido de grafeno: una alternativa novedosa para la conservación de alimentos. Informador Técnico, 2016, 80, 20.	0.1	0
66	Formulación, desarrollo y divulgación de proyectos de investigación. , 2020, , .		0