Olle W Ingnas

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5383669/olle-w-inganas-publications-by-year.pdf

Version: 2024-04-27

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

39,758 183 98 454 h-index g-index citations papers 468 7.66 42,563 9.5 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
454	Towards printable water-in-polymer salt electrolytes for high power organic batteries. <i>Journal of Power Sources</i> , 2022 , 524, 231103	8.9	4
453	Self-discharge study of lignin/graphite hybrid material electrodes. <i>Electrochimica Acta</i> , 2021 , 371, 1378	3 6 .7	3
452	A unified description of non-radiative voltage losses in organic solar cells. <i>Nature Energy</i> , 2021 , 6, 799-8	06 2.3	70
451	UV-protection and fluorescence properties of the exoskeleton obtained from a living diatom modified by an Eu3+-complex. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 10005-10012	7.1	0
450	In Situ Optical Studies on Morphology Formation in Organic Photovoltaic Blends <i>Small Methods</i> , 2021 , 5, e2100585	12.8	6
449	Non-conjugated natural alginate as electron-transport layer for high performance polymer solar cells after modification. <i>Journal of Power Sources</i> , 2021 , 510, 230408	8.9	1
448	17.25% high efficiency ternary solar cells with increased open-circuit voltage using a high HOMO level small molecule guest donor in a PM6:Y6 blend. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 20493-20)5 0 31	12
447	A DNA and Self-Doped Conjugated Polyelectrolyte Assembled for Organic Optoelectronics and Bioelectronics. <i>Biomacromolecules</i> , 2020 , 21, 1214-1221	6.9	6
446	All-Polymer High-Performance Photodetector through Lamination. <i>Advanced Electronic Materials</i> , 2020 , 6, 1901017	6.4	17
445	Reduced Nonradiative Voltage Loss in Terpolymer Solar Cells. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 3796-3802	6.4	5
444	Vibronic coherence contributes to photocurrent generation in organic semiconductor heterojunction diodes. <i>Nature Communications</i> , 2020 , 11, 617	17.4	14
443	Dedoping-induced interfacial instability of poly(ethylene imine)s-treated PEDOT:PSS as a low-work-function electrode. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 328-336	7.1	12
442	Over 14% efficiency all-polymer solar cells enabled by a low bandgap polymer acceptor with low energy loss and efficient charge separation. <i>Energy and Environmental Science</i> , 2020 , 13, 5017-5027	35.4	117
441	Effect of Sulfonation Level on Lignin/Carbon Composite Electrodes for Large-Scale Organic Batteries. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 17933-17944	8.3	8
440	Microfluidic-Assisted Blade Coating of Compositional Libraries for Combinatorial Applications: The Case of Organic Photovoltaics. <i>Advanced Energy Materials</i> , 2020 , 10, 2001308	21.8	4
439	Organic Eu3+-complex-anchored porous diatomite channels enable UV protection and down conversion in hybrid material. <i>Science and Technology of Advanced Materials</i> , 2020 , 21, 726-736	7.1	1
438	Doped Conjugated Polymer Enclosing a Redox Polymer: Wiring Polyquinones with Poly(3,4-Ethylenedioxythiophene). <i>Advanced Energy and Sustainability Research</i> , 2020 , 1, 2000027	1.6	8

(2018-2019)

437	One-Step Blade-Coated Highly Efficient Nonfullerene Organic Solar Cells with a Self-Assembled Interfacial Layer Enabled by Solvent Vapor Annealing. <i>Solar Rrl</i> , 2019 , 3, 1900179	7.1	11
436	Organic electrochemical transistors from supramolecular complexes of conjugated polyelectrolyte PEDOTS. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 2987-2993	7.1	13
435	Wide-gap non-fullerene acceptor enabling high-performance organic photovoltaic cells for indoor applications. <i>Nature Energy</i> , 2019 , 4, 768-775	62.3	256
434	Lessons Learned in Organic Optoelectronics. <i>Chemistry of Materials</i> , 2019 , 31, 6309-6314	9.6	3
433	Photovoltage loss in semi-transparent organic photovoltaic devices. <i>Organic Electronics</i> , 2019 , 74, 37-40	13.5	6
432	Photo-Oxidation Reveals H-Aggregates Hidden in Spin-Cast-Conjugated Polymer Films as Observed by Two-Dimensional Polarization Imaging. <i>Chemistry of Materials</i> , 2019 , 31, 8927-8936	9.6	3
431	Estacking Distance and Phase Separation Controlled Efficiency in Stable All-Polymer Solar Cells. <i>Polymers</i> , 2019 , 11,	4.5	11
430	Enhancing Energy Storage Devices with Biomacromolecules in Hybrid Electrodes. <i>Biotechnology Journal</i> , 2019 , 14, e1900062	5.6	13
429	Nonequilibrium site distribution governs charge-transfer electroluminescence at disordered organic heterointerfaces. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 23416-23425	11.5	20
428	Pulsed Terahertz Emission from Solution-Processed Lead Iodide Perovskite Films. <i>ACS Photonics</i> , 2019 , 6, 1175-1181	6.3	17
427	Biocarbon Meets Carbon-Humic Acid/Graphite Electrodes Formed by Mechanochemistry. <i>Materials</i> , 2019 , 12,	3.5	5
426	Scalable lignin/graphite electrodes formed by mechanochemistry <i>RSC Advances</i> , 2019 , 9, 39758-39767	3.7	11
425	DNA Based Hybrid Material for Interface Engineering in Polymer Solar Cells. <i>ACS Applied Materials</i> & <i>amp; Interfaces</i> , 2018 , 10, 9579-9586	9.5	15
424	Conducting Helical Structures from Celery Decorated with a Metallic Conjugated Polymer Give Resonances in the Terahertz Range. <i>Advanced Functional Materials</i> , 2018 , 28, 1706595	15.6	6
423	Asymmetric photocurrent extraction in semitransparent laminated flexible organic solar cells. <i>Npj Flexible Electronics</i> , 2018 , 2,	10.7	36
422	Organic solar cells based on non-fullerene acceptors. <i>Nature Materials</i> , 2018 , 17, 119-128	27	1743
421	Thermal annealing reduces geminate recombination in TQ1:N2200 all-polymer solar cells. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 7428-7438	13	30
420	Design rules for minimizing voltage losses in high-efficiency organic solar cells. <i>Nature Materials</i> , 2018 , 17, 703-709	27	500

419	Active Materials for Organic Electrochemical Transistors. <i>Advanced Materials</i> , 2018 , 30, e1800941	24	119
418	Diatom frustules protect DNA from ultraviolet light. <i>Scientific Reports</i> , 2018 , 8, 5138	4.9	39
417	Uniaxial Anisotropy in PEDOT:PSS Electrodes Enhances the Photocurrent at Oblique Incidence in Organic Solar Cells. <i>ACS Photonics</i> , 2018 , 5, 3023-3030	6.3	7
416	Relating open-circuit voltage losses to the active layer morphology and contact selectivity in organic solar cells. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 12574-12581	13	53
415	Boosting the capacity of all-organic paper supercapacitors using wood derivatives. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 145-152	13	66
414	The contraction of PEDOT films formed on a macromolecular liquid-like surface. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 654-660	7.1	14
413	Highly Stable and Efficient Lignin-PEDOT/PSS Composites for Removal of Toxic Metals. <i>Advanced Sustainable Systems</i> , 2018 , 2, 1700114	5.9	13
412	Semitransparent all-polymer solar cells through lamination. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 21186-21192	13	13
411	Large-Area, Semitransparent, and Flexible All-Polymer Photodetectors. <i>Advanced Functional Materials</i> , 2018 , 28, 1805570	15.6	50
410	Light-induced degradation of fullerenes in organic solar cells: a case study on TQ1:PC71BM. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 11884-11889	13	19
409	Open-Circuit Voltage Modulations on All-Polymer Solar Cells by Side Chain Engineering on 4,8-Di(thiophen-2-yl)benzo[1,2-b:4,5-b?]dithiophene-Based Donor Polymers. <i>ACS Applied Energy Materials</i> , 2018 , 1, 2918-2926	6.1	10
408	Organic Photovoltaics over Three Decades. <i>Advanced Materials</i> , 2018 , 30, e1800388	24	360
407	Photogenerated Carrier Mobility Significantly Exceeds Injected Carrier Mobility in Organic Solar Cells. <i>Advanced Energy Materials</i> , 2017 , 7, 1602143	21.8	54
406	Innovative polyelectrolytes/poly(ionic liquid)s for energy and the environment. <i>Polymer International</i> , 2017 , 66, 1119-1128	3.3	33
405	A fullerene alloy based photovoltaic blend with a glass transition temperature above 200 °C. Journal of Materials Chemistry A, 2017 , 5, 4156-4162	13	16
404	Conjugated Polyelectrolyte Blends for Highly Stable Accumulation-Mode Electrochemical Transistors. <i>Chemistry of Materials</i> , 2017 , 29, 4293-4300	9.6	31
403	Macroscopic Domains within an Oriented TQ1 Film Visualized Using 2D Polarization Imaging. <i>ACS Omega</i> , 2017 , 2, 32-40	3.9	9
402	Conducting microhelices from self-assembly of protein fibrils. <i>Soft Matter</i> , 2017 , 13, 4412-4417	3.6	12

401	Comparing the device physics, dynamics and morphology of polymer solar cells employing conventional PCBM and non-fullerene polymer acceptor N2200. <i>Nano Energy</i> , 2017 , 35, 251-262	17.1	72
400	Highly Stable Conjugated Polyelectrolytes for Water-Based Hybrid Mode Electrochemical Transistors. <i>Advanced Materials</i> , 2017 , 29, 1605787	24	35
399	Multiparameter investigation of bulk heterojunction organic photovoltaics. RSC Advances, 2017, 7, 463	1 3./1 63	2 0
398	A Highly Crystalline Wide-Band-Gap Conjugated Polymer toward High-Performance As-Cast Nonfullerene Polymer Solar Cells. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 36061-36069	9.5	28
397	Nanoscale Chain Alignment and Morphology in All-Polymer Blends Visualized Using 2D Polarization Fluorescence Imaging: Correlation to Power Conversion Efficiencies in Solar Cells. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 21848-21856	3.8	6
396	Ternary Organic Solar Cells with Minimum Voltage Losses. <i>Advanced Energy Materials</i> , 2017 , 7, 1700390	21.8	49
395	Scalable Asymmetric Supercapacitors Based on Hybrid Organic/Biopolymer Electrodes. <i>Advanced Sustainable Systems</i> , 2017 , 1, 1700054	5.9	25
394	Charge Transport in Pure and Mixed Phases in Organic Solar Cells. <i>Advanced Energy Materials</i> , 2017 , 7, 1700888	21.8	45
393	Mapping Polymer Donors toward High-Efficiency Fullerene Free Organic Solar Cells. <i>Advanced Materials</i> , 2017 , 29, 1604155	24	335
392	Bioinspired Redox-Active Catechol-Bearing Polymers as Ultrarobust Organic Cathodes for Lithium Storage. <i>Advanced Materials</i> , 2017 , 29, 1703373	24	75
391	Self-doped conjugated polyelectrolyte with tuneable work function for effective hole transport in polymer solar cells. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 15670-15675	13	26
390	Organic Photovoltaics: Low Band Gap Polymer Solar Cells With Minimal Voltage Losses (Adv. Energy Mater. 18/2016). <i>Advanced Energy Materials</i> , 2016 , 6,	21.8	1
389	Conjugated Polyelectrolyte Blend as Photonic Probe of Biomembrane Organization. <i>ChemistrySelect</i> , 2016 , 1, 4340-4344	1.8	10
388	Low Band Gap Polymer Solar Cells With Minimal Voltage Losses. <i>Advanced Energy Materials</i> , 2016 , 6, 1600148	21.8	80
387	Fast charge separation in a non-fullerene organic solar cell with a small driving force. <i>Nature Energy</i> , 2016 , 1,	62.3	967
386	Electrochemical Synthesis and Characterization of Interpenetrating Networks of Conducting Polymers for Enhanced Charge Storage. <i>Advanced Materials Interfaces</i> , 2016 , 3, 1500533	4.6	14
385	Development of polymerfullerene solar cells. <i>National Science Review</i> , 2016 , 3, 222-239	10.8	63
384	New method for lateral mapping of bimolecular recombination in thin-film organic solar cells. <i>Progress in Photovoltaics: Research and Applications</i> , 2016 , 24, 1096-1108	6.8	7

383	Two-in-one: cathode modification and improved solar cell blend stability through addition of modified fullerenes. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 2663-2669	13	24
382	Hybrid materials from organic electronic conductors and synthetic-lignin models for charge storage applications. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 1931-1940	13	26
381	Non-fullerene acceptor with low energy loss and high external quantum efficiency: towards high performance polymer solar cells. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 5890-5897	13	202
380	Inverted all-polymer solar cells based on a quinoxalineEhiophene/naphthalene-diimide polymer blend improved by annealing. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 3835-3843	13	51
379	Morphology, Temperature, and Field Dependence of Charge Separation in High-Efficiency Solar Cells Based on Alternating Polyquinoxaline Copolymer. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 4219	-4226	19
378	Solar energy for electricity and fuels. <i>Ambio</i> , 2016 , 45 Suppl 1, S15-23	6.5	33
377	Enhancing charge storage of conjugated polymer electrodes with phenolic acids. <i>Journal of Power Sources</i> , 2016 , 302, 324-330	8.9	19
376	Fullerene-Free Polymer Solar Cells with over 11% Efficiency and Excellent Thermal Stability. <i>Advanced Materials</i> , 2016 , 28, 4734-9	24	1507
375	LED array scanner for inline characterization of thin film photovoltaic modules. <i>Solar Energy Materials and Solar Cells</i> , 2016 , 157, 1057-1064	6.4	4
374	High Performance All-Polymer Solar Cells by Synergistic Effects of Fine-Tuned Crystallinity and Solvent Annealing. <i>Journal of the American Chemical Society</i> , 2016 , 138, 10935-44	16.4	362
373	Role of Polymer in Hybrid Polymer/PbS Quantum Dot Solar Cells. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 14972-14979	3.8	40
372	Electronic polymers in lipid membranes. <i>Scientific Reports</i> , 2015 , 5, 11242	4.9	25
371	Modulating molecular aggregation by facile heteroatom substitution of diketopyrrolopyrrole based small molecules for efficient organic solar cells. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 24349-2	24357	23
370	Conjugated Polyelectrolyte Blends for Electrochromic and Electrochemical Transistor Devices. <i>Chemistry of Materials</i> , 2015 , 27, 6385-6393	9.6	67
369	Imaging the Phase Separation Between PEDOT and Polyelectrolytes During Processing of Highly Conductive PEDOT:PSS Films. <i>ACS Applied Materials & Acs Applied & A</i>	9.5	128
368	Comparison of selenophene and thienothiophene incorporation into pentacyclic lactam-based conjugated polymers for organic solar cells. <i>Polymer Chemistry</i> , 2015 , 6, 7402-7409	4.9	4
367	One-Step Synthesis of Precursor Oligomers for Organic Photovoltaics: A Comparative Study between Polymers and Small Molecules. <i>ACS Applied Materials & District Materials</i> , 7, 27106-14	9.5	23
366	Fully-solution-processed organic solar cells with a highly efficient paper-based light trapping element. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 24289-24296	13	19

(2014-2015)

365	Photo-generated carriers lose energy during extraction from polymer-fullerene solar cells. <i>Nature Communications</i> , 2015 , 6, 8778	17.4	89
364	Predicting the Open-Circuit Voltage of CH3NH3PbI3 Perovskite Solar Cells Using Electroluminescence and Photovoltaic Quantum Efficiency Spectra: the Role of Radiative and Non-Radiative Recombination. <i>Advanced Energy Materials</i> , 2015 , 5, 1400812	21.8	358
363	High-Entropy Mixtures of Pristine Fullerenes for Solution-Processed Transistors and Solar Cells. <i>Advanced Materials</i> , 2015 , 27, 7325-31	24	45
362	Lignin Modification for Biopolymer/Conjugated Polymer Hybrids as Renewable Energy Storage Materials. <i>ChemSusChem</i> , 2015 , 8, 4081-5	8.3	31
361	The Effect of Processing Additives on Energetic Disorder in Highly Efficient Organic Photovoltaics: A Case Study on PBDTTT-C-T:PC71 BM. <i>Advanced Materials</i> , 2015 , 27, 3868-73	24	41
360	Protein nanowires with conductive properties. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 6499-6504	7.1	16
359	Temperature dependence of charge carrier generation in organic photovoltaics. <i>Physical Review Letters</i> , 2015 , 114, 128701	7.4	84
358	Extracting metal ions from water with redox active biopolymer electrodes. <i>Environmental Science:</i> Water Research and Technology, 2015 , 1, 326-331	4.2	10
357	DA1DA2Copolymers with Extended Donor Segments for Efficient Polymer Solar Cells. <i>Macromolecules</i> , 2015 , 48, 1009-1016	5.5	78
356	A new fullerene-free bulk-heterojunction system for efficient high-voltage and high-fill factor solution-processed organic photovoltaics. <i>Advanced Materials</i> , 2015 , 27, 1900-7	24	77
355	Fullerene Nucleating Agents: A Route Towards Thermally Stable Photovoltaic Blends. <i>Advanced Energy Materials</i> , 2014 , 4, 1301437	21.8	60
354	Charge Carrier Dynamics of Polymer:Fullerene Blends: From Geminate to Non-Geminate Recombination. <i>Advanced Energy Materials</i> , 2014 , 4, 1301706	21.8	16
353	25th anniversary article: organic photovoltaic modules and biopolymer supercapacitors for supply of renewable electricity: a perspective from Africa. <i>Advanced Materials</i> , 2014 , 26, 830-48	24	39
352	StructureBroperty relationships of oligothiopheneBoindigo polymers for efficient bulk-heterojunction solar cells. <i>Energy and Environmental Science</i> , 2014 , 7, 361-369	35.4	100
351	Fullerene mixtures enhance the thermal stability of a non-crystalline polymer solar cell blend. <i>Applied Physics Letters</i> , 2014 , 104, 153301	3.4	44
350	Intermodulation electrostatic force microscopy for imaging surface photo-voltage. <i>Applied Physics Letters</i> , 2014 , 105, 143113	3.4	34
349	Neat C60:C70 buckminsterfullerene mixtures enhance polymer solar cell performance. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 14354-14359	13	25
348	Charge generation in polymer-fullerene bulk-heterojunction solar cells. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 20291-304	3.6	166

347	Sub-glass transition annealing enhances polymer solar cell performance. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 6146-6152	13	43
346	Improving Cathodes with a Polymer Interlayer in Reversed Organic Solar Cells. <i>Advanced Energy Materials</i> , 2014 , 4, 1400643	21.8	31
345	Amyloid fibrils as dispersing agents for oligothiophenes: control of photophysical properties through nanoscale templating and flow induced fibril alignment. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 7811	7.1	22
344	A new tetracyclic lactam building block for thick, broad-bandgap photovoltaics. <i>Journal of the American Chemical Society</i> , 2014 , 136, 11578-81	16.4	67
343	A Facile Method to Enhance Photovoltaic Performance of Benzodithiophene-Isoindigo Polymers by Inserting Bithiophene Spacer. <i>Advanced Energy Materials</i> , 2014 , 4, 1301455	21.8	58
342	Dark states in ionic oligothiophene bioprobesevidence from fluorescence correlation spectroscopy and dynamic light scattering. <i>Journal of Physical Chemistry B</i> , 2014 , 118, 5924-33	3.4	3
341	Charge carrier generation and transport in different stoichiometry APFO3:PC61BM solar cells. <i>Journal of the American Chemical Society</i> , 2014 , 136, 11331-8	16.4	29
340	Stability study of quinoxaline and pyrido pyrazine based co-polymers for solar cell applications. <i>Solar Energy Materials and Solar Cells</i> , 2014 , 130, 138-143	6.4	23
339	Dispersion-Dominated Photocurrent in Polymer:Fullerene Solar Cells. <i>Advanced Functional Materials</i> , 2014 , 24, 4507-4514	15.6	55
338	Light trapping in thin film organic solar cells. <i>Materials Today</i> , 2014 , 17, 389-396	21.8	111
338	Light trapping in thin film organic solar cells. <i>Materials Today</i> , 2014 , 17, 389-396 A renewable biopolymer cathode with multivalent metal ions for enhanced charge storage. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 1974-1979	21.8	35
	A renewable biopolymer cathode with multivalent metal ions for enhanced charge storage. <i>Journal</i>		
337	A renewable biopolymer cathode with multivalent metal ions for enhanced charge storage. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 1974-1979 Amperometric detection of iron (III) on electroconductive hydrogel based on polypyrrole and	13	35
337	A renewable biopolymer cathode with multivalent metal ions for enhanced charge storage. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 1974-1979 Amperometric detection of iron (III) on electroconductive hydrogel based on polypyrrole and alkoxysulfonated poly(3,4-ethylenedioxythiophene) (PEDOT-S). <i>Synthetic Metals</i> , 2014 , 194, 170-175 Conjugated polymers with polar side chains in bulk heterojunction solar cell devices. <i>Polymer</i>	1 3	35 9
337 336 335	A renewable biopolymer cathode with multivalent metal ions for enhanced charge storage. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 1974-1979 Amperometric detection of iron (III) on electroconductive hydrogel based on polypyrrole and alkoxysulfonated poly(3,4-ethylenedioxythiophene) (PEDOT-S). <i>Synthetic Metals</i> , 2014 , 194, 170-175 Conjugated polymers with polar side chains in bulk heterojunction solar cell devices. <i>Polymer International</i> , 2014 , 63, 22-30 Polarization Imaging of Emissive Charge Transfer States in Polymer/Fullerene Blends. <i>Chemistry of</i>	3.6 3.3	35 9 8
337336335334	A renewable biopolymer cathode with multivalent metal ions for enhanced charge storage. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 1974-1979 Amperometric detection of iron (III) on electroconductive hydrogel based on polypyrrole and alkoxysulfonated poly(3,4-ethylenedioxythiophene) (PEDOT-S). <i>Synthetic Metals</i> , 2014 , 194, 170-175 Conjugated polymers with polar side chains in bulk heterojunction solar cell devices. <i>Polymer International</i> , 2014 , 63, 22-30 Polarization Imaging of Emissive Charge Transfer States in Polymer/Fullerene Blends. <i>Chemistry of Materials</i> , 2014 , 26, 6695-6704 Electrochemistry and Ion Sensing Properties of Conducting Hydrogel Layers Based on Polypyrrole	3.6 3.3 9.6	35 9 8 12
337336335334333	A renewable biopolymer cathode with multivalent metal ions for enhanced charge storage. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 1974-1979 Amperometric detection of iron (III) on electroconductive hydrogel based on polypyrrole and alkoxysulfonated poly(3,4-ethylenedioxythiophene) (PEDOT-S). <i>Synthetic Metals</i> , 2014 , 194, 170-175 Conjugated polymers with polar side chains in bulk heterojunction solar cell devices. <i>Polymer International</i> , 2014 , 63, 22-30 Polarization Imaging of Emissive Charge Transfer States in Polymer/Fullerene Blends. <i>Chemistry of Materials</i> , 2014 , 26, 6695-6704 Electrochemistry and Ion Sensing Properties of Conducting Hydrogel Layers Based on Polypyrrole and Alkoxysulfonated Poly(3,4-ethylenedioxythiophene) (PEDOT-S). <i>Electroanalysis</i> , 2014 , 26, 739-747 Charge storage properties of biopolymer electrodes with (sub)tropical lignins. <i>Physical Chemistry</i>	3.6 3.3 9.6 3	35 9 8 12

(2012-2013)

329	Simple experimental test to distinguish extraction and injection barriers at the electrodes of (organic) solar cells with S-shaped currentwoltage characteristics. <i>Solar Energy Materials and Solar Cells</i> , 2013 , 117, 599-603	6.4	65
328	Origin of Reduced Bimolecular Recombination in Blends of Conjugated Polymers and Fullerenes. <i>Advanced Functional Materials</i> , 2013 , 23, 4262-4268	15.6	72
327	In situ reflectance imaging of organic thin film formation from solution deposition. <i>Solar Energy Materials and Solar Cells</i> , 2013 , 114, 89-98	6.4	19
326	Micro X-ray diffraction mapping of a fluorene copolymer fibre. <i>Polymer</i> , 2013 , 54, 805-811	3.9	9
325	Electronic polymers and DNA self-assembled in nanowire transistors. <i>Small</i> , 2013 , 9, 363-8	11	32
324	Conformational Disorder Enhances Solubility and Photovoltaic Performance of a Thiophene Quinoxaline Copolymer. <i>Advanced Energy Materials</i> , 2013 , 3, 806-814	21.8	85
323	Unified Study of Recombination in Polymer:Fullerene Solar Cells Using Transient Absorption and Charge-Extraction Measurements. <i>Journal of Physical Chemistry Letters</i> , 2013 , 4, 2069-72	6.4	24
322	Molecular orbital energy level modulation through incorporation of selenium and fluorine into conjugated polymers for organic photovoltaic cells. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 13422	13	26
321	Determination of Thermal Transition Depth Profiles in Polymer Semiconductor Films with Ellipsometry. <i>Macromolecules</i> , 2013 , 46, 7325-7331	5.5	21
320	Interlayer for modified cathode in highly efficient inverted ITO-free organic solar cells. <i>Advanced Materials</i> , 2012 , 24, 554-8	24	88
319	Morphology of organic electronic materials imaged via electron tomography. <i>Journal of Microscopy</i> , 2012 , 247, 277-87	1.9	7
318	Mixed C60/C70 based fullerene acceptors in polymer bulk-heterojunction solar cells. <i>Organic Electronics</i> , 2012 , 13, 2856-2864	3.5	16
317	Polarization anisotropy of charge transfer absorption and emission of aligned polymer:fullerene blend films. <i>Physical Review B</i> , 2012 , 86,	3.3	27
316	Renewable cathode materials from biopolymer/conjugated polymer interpenetrating networks. <i>Science</i> , 2012 , 335, 1468-71	33.3	380
315	Synthesis and characterization of benzodithiophene Boindigo polymers for solar cells. <i>Journal of Materials Chemistry</i> , 2012 , 22, 2306-2314		146
314	Bio-Based Materials as Templates for Electronic Devices 2012 , 401-429		1
313	Influences of Surface Roughness of ZnO Electron Transport Layer on the Photovoltaic Performance of Organic Inverted Solar Cells. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 24462-24468	3.8	103
312	Protein Nanofibrils Balance Colours in Organic White-Light-Emitting Diodes. <i>Israel Journal of Chemistry</i> , 2012 , 52, 529-539	3.4	23

311	Quantification of Quantum Efficiency and Energy Losses in Low Bandgap Polymer:Fullerene Solar Cells with High Open-Circuit Voltage. <i>Advanced Functional Materials</i> , 2012 , 22, 3480-3490	15.6	164
310	Semi-Transparent Tandem Organic Solar Cells with 90% Internal Quantum Efficiency. <i>Advanced Energy Materials</i> , 2012 , 2, 1467-1476	21.8	93
309	Alternating copolymers and alternative device geometries for organic photovoltaics. <i>Ambio</i> , 2012 , 41 Suppl 2, 138-42	6.5	7
308	Light trapping with total internal reflection and transparent electrodes in organic photovoltaic devices. <i>Applied Physics Letters</i> , 2012 , 101, 163902	3.4	18
307	An easily accessible isoindigo-based polymer for high-performance polymer solar cells. <i>Journal of the American Chemical Society</i> , 2011 , 133, 14244-7	16.4	349
306	Charge Transfer States in Organic DonorAcceptor Solar Cells. <i>Semiconductors and Semimetals</i> , 2011 , 85, 261-295	0.6	17
305	Side-Chain Architectures of 2,7-Carbazole and Quinoxaline-Based Polymers for Efficient Polymer Solar Cells. <i>Macromolecules</i> , 2011 , 44, 2067-2073	5.5	118
304	An isoindigo-based low band gap polymer for efficient polymer solar cells with high photo-voltage. <i>Chemical Communications</i> , 2011 , 47, 4908-10	5.8	128
303	Lyotropic phase behaviour of dilute, aqueous hen lysozyme amyloid fibril dispersions. <i>Journal of Materials Science</i> , 2011 , 46, 3687-3692	4.3	6
302	Consensus stability testing protocols for organic photovoltaic materials and devices. <i>Solar Energy Materials and Solar Cells</i> , 2011 , 95, 1253-1267	6.4	690
301	Interactions between a luminescent conjugated oligoelectrolyte and insulin during early phases of amyloid formation. <i>Macromolecular Bioscience</i> , 2011 , 11, 1120-7	5.5	11
300	Lateral Phase Separation Gradients in Spin-Coated Thin Films of High-Performance Polymer:Fullerene Photovoltaic Blends. <i>Advanced Functional Materials</i> , 2011 , 21, 3169-3175	15.6	48
299	Woven electrochemical transistors on silk fibers. Advanced Materials, 2011, 23, 898-901	24	133
298	Phase behaviour of liquid-crystalline polymer/fullerene organic photovoltaic blends: thermal stability and miscibility. <i>Journal of Materials Chemistry</i> , 2011 , 21, 10676		74
297	Functionalisation of recombinant spider silk with conjugated polyelectrolytes. <i>Journal of Materials Chemistry</i> , 2011 , 21, 2909		18
296	Influence of side chains on electrochromic properties of green donor donor donor polymers. <i>Electrochimica Acta</i> , 2011 , 56, 3454-3459	6.7	21
295	The Effect of additive on performance and shelf-stability of HSX-1/PCBM photovoltaic devices. <i>Organic Electronics</i> , 2011 , 12, 1544-1551	3.5	56
294	Full day modelling of V-shaped organic solar cell. <i>Solar Energy</i> , 2011 , 85, 1257-1263	6.8	21

(2010-2011)

293	Optical properties of hybrid titanium chevron sculptured thin films coated with a semiconducting polymer. <i>Thin Solid Films</i> , 2011 , 519, 2645-2649	2.2	9
292	Mobility and fill factor correlation in geminate recombination limited solar cells. <i>Journal of Applied Physics</i> , 2011 , 110, 024509	2.5	55
291	Solution-Processable Organic Molecule with Triphenylamine Core and Two Benzothiadiazole-Thiophene Arms for Photovoltaic Application. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 3701-3706	3.8	94
290	Synthesis and characterization of three small band gap conjugated polymers for solar cell applications. <i>Polymer Chemistry</i> , 2010 , 1, 1272	4.9	17
289	Hybrid electronics and electrochemistry with conjugated polymers. <i>Chemical Society Reviews</i> , 2010 , 39, 2633-42	58.5	57
288	Small band gap polymers synthesized via a modified nitration of 4,7-dibromo-2,1,3-benzothiadiazole. <i>Organic Letters</i> , 2010 , 12, 4470-3	6.2	76
287	White light with phosphorescent protein fibrils in OLEDs. <i>Nano Letters</i> , 2010 , 10, 2225-30	11.5	64
286	Separating ion and electron transport: the bilayer light-emitting electrochemical cell. <i>Journal of the American Chemical Society</i> , 2010 , 132, 6646-7	16.4	52
285	Charge carrier extraction by linearly increasing voltage: Analytic framework and ambipolar transients. <i>Journal of Applied Physics</i> , 2010 , 108, 113705	2.5	77
			1
284	DNA chips with conjugated polyelectrolytes in resonance energy transfer mode. <i>Langmuir</i> , 2010 , 26, 3753-9	4	10
284		16.4	10
Í	26, 3753-9 Geminate charge recombination in polymer/fullerene bulk heterojunction films and implications for		
283	26, 3753-9 Geminate charge recombination in polymer/fullerene bulk heterojunction films and implications for solar cell function. <i>Journal of the American Chemical Society</i> , 2010 , 132, 12440-51 Biomolecular nanowires decorated by organic electronic polymers. <i>Journal of Materials Chemistry</i> ,		120
283	Geminate charge recombination in polymer/fullerene bulk heterojunction films and implications for solar cell function. <i>Journal of the American Chemical Society</i> , 2010 , 132, 12440-51 Biomolecular nanowires decorated by organic electronic polymers. <i>Journal of Materials Chemistry</i> , 2010 , 20, 2269-2276 Relating the open-circuit voltage to interface molecular properties of donor:acceptor bulk	16.4	120
283	Geminate charge recombination in polymer/fullerene bulk heterojunction films and implications for solar cell function. <i>Journal of the American Chemical Society</i> , 2010 , 132, 12440-51 Biomolecular nanowires decorated by organic electronic polymers. <i>Journal of Materials Chemistry</i> , 2010 , 20, 2269-2276 Relating the open-circuit voltage to interface molecular properties of donor:acceptor bulk heterojunction solar cells. <i>Physical Review B</i> , 2010 , 81,	3.3	120 19 636
283 282 281 280	Geminate charge recombination in polymer/fullerene bulk heterojunction films and implications for solar cell function. <i>Journal of the American Chemical Society</i> , 2010 , 132, 12440-51 Biomolecular nanowires decorated by organic electronic polymers. <i>Journal of Materials Chemistry</i> , 2010 , 20, 2269-2276 Relating the open-circuit voltage to interface molecular properties of donor:acceptor bulk heterojunction solar cells. <i>Physical Review B</i> , 2010 , 81, Hybrid bioinorganic insulin amyloid fibrils. <i>Chemical Communications</i> , 2010 , 46, 4157-9 On the Dissociation Efficiency of Charge Transfer Excitons and Frenkel Excitons in Organic Solar	3·3 5.8	120 19 636 19
283 282 281 280	Geminate charge recombination in polymer/fullerene bulk heterojunction films and implications for solar cell function. <i>Journal of the American Chemical Society</i> , 2010 , 132, 12440-51 Biomolecular nanowires decorated by organic electronic polymers. <i>Journal of Materials Chemistry</i> , 2010 , 20, 2269-2276 Relating the open-circuit voltage to interface molecular properties of donor:acceptor bulk heterojunction solar cells. <i>Physical Review B</i> , 2010 , 81, Hybrid bioinorganic insulin amyloid fibrils. <i>Chemical Communications</i> , 2010 , 46, 4157-9 On the Dissociation Efficiency of Charge Transfer Excitons and Frenkel Excitons in Organic Solar Cells: A Luminescence Quenching Study. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 21824-21832	3·3 5·8 3·8	120 19 636 19

275	Charge-Transfer States and Upper Limit of the Open-Circuit Voltage in Polymer:Fullerene Organic Solar Cells. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2010 , 16, 1676-1684	3.8	60
274	Black Polymers in Bulk-Heterojunction Solar Cells. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2010 , 16, 1565-1572	3.8	9
273	Stability of poly(3,4-ethylene dioxythiophene) materials intended for implants. <i>Journal of Biomedical Materials Research - Part B Applied Biomaterials</i> , 2010 , 93, 407-15	3.5	60
272	Influence of Molecular Weight on the Performance of Organic Solar Cells Based on a Fluorene Derivative. <i>Advanced Functional Materials</i> , 2010 , 20, 2124-2131	15.6	114
271	Bipolar charge transport in fullerene molecules in a bilayer and blend of polyfluorene copolymer and fullerene. <i>Advanced Materials</i> , 2010 , 22, 1008-11	24	14
270	Polymer photovoltaics with alternating copolymer/fullerene blends and novel device architectures. <i>Advanced Materials</i> , 2010 , 22, E100-16	24	96
269	An easily synthesized blue polymer for high-performance polymer solar cells. <i>Advanced Materials</i> , 2010 , 22, 5240-4	24	410
268	Preparation of phosphorescent amyloid-like protein fibrils. <i>Chemistry - A European Journal</i> , 2010 , 16, 4190-5	4.8	26
267	Poly(4,8-bis(2-ethylhexyloxy)benzo[1,2-b:4,5-b?]dithiophene vinylene): Synthesis, optical and photovoltaic properties. <i>Journal of Polymer Science Part A</i> , 2010 , 48, 1822-1829	2.5	30
266	From Metal to Semiconductor and BackII hirty Years of Conjugated Polymer 2010 , 29-41		2
265	Ultrafast conductivity in a low-band-gap polyphenylene and fullerene blend studied by terahertz spectroscopy. <i>Physical Review B</i> , 2009 , 79,	3.3	28
264	Observation of a Charge Transfer State in Low-Bandgap Polymer/Fullerene Blend Systems by Photoluminescence and Electroluminescence Studies. <i>Advanced Functional Materials</i> , 2009 , 19, 3293-32	9 ⁵ 95.6	69
263	Fiber-Embedded Electrolyte-Gated Field-Effect Transistors for e-Textiles. <i>Advanced Materials</i> , 2009 , 21, 573-7	24	141
262	Device Performance of APFO-3/PCBM Solar Cells with Controlled Morphology. <i>Advanced Materials</i> , 2009 , 21, 4398-403	24	51
261	A round robin study of flexible large-area roll-to-roll processed polymer solar cell modules. <i>Solar Energy Materials and Solar Cells</i> , 2009 , 93, 1968-1977	6.4	194
260	Oligothiophene assemblies defined by DNA interaction: from single chains to disordered clusters. <i>Small</i> , 2009 , 5, 96-103	11	26
259	On the origin of the open-circuit voltage of polymer-fullerene solar cells. <i>Nature Materials</i> , 2009 , 8, 904	-9 7	1006
258	Photogenerated charge carrier transport and recombination in polyfluorene/fullerene bilayer and blend photovoltaic devices. <i>Organic Electronics</i> , 2009 , 10, 501-505	3.5	19

(2008-2009)

257	Inverted and transparent polymer solar cells prepared with vacuum-free processing. <i>Solar Energy Materials and Solar Cells</i> , 2009 , 93, 497-500	6.4	143
256	Fabrication of a light trapping system for organic solar cells. <i>Microelectronic Engineering</i> , 2009 , 86, 1150	-1.554	33
255	From short to long IDptical and electrical transients in photovoltaic bulk heterojunctions of polyfluorene/fullerenes. <i>Chemical Physics</i> , 2009 , 357, 120-123	2.3	15
254	The promotion of neuronal maturation on soft substrates. <i>Biomaterials</i> , 2009 , 30, 4567-72	15.6	150
253	Electroluminescence from charge transfer states in polymer solar cells. <i>Journal of the American Chemical Society</i> , 2009 , 131, 11819-24	16.4	318
252	Imaging of the 3D nanostructure of a polymer solar cell by electron tomography. <i>Nano Letters</i> , 2009 , 9, 853-5	11.5	97
251	A planar copolymer for high efficiency polymer solar cells. <i>Journal of the American Chemical Society</i> , 2009 , 131, 14612-3	16.4	392
250	Iron-Catalyzed Polymerization of Alkoxysulfonate-Functionalized 3,4-Ethylenedioxythiophene Gives Water-Soluble Poly(3,4-ethylenedioxythiophene) of High Conductivity. <i>Chemistry of Materials</i> , 2009 , 21, 1815-1821	9.6	87
249	An optical spacer is no panacea for light collection in organic solar cells. <i>Applied Physics Letters</i> , 2009 , 94, 043302	3.4	63
248	Nanomorphology of Bulk Heterojunction Organic Solar Cells in 2D and 3D Correlated to Photovoltaic Performance. <i>Macromolecules</i> , 2009 , 42, 4646-4650	5.5	42
247	Alternating polyfluorenes collect solar light in polymer photovoltaics. <i>Accounts of Chemical Research</i> , 2009 , 42, 1731-9	24.3	227
246	Bridging dimensions in organic electronics: assembly of electroactive polymer nanodevices from fluids. <i>Nano Letters</i> , 2009 , 9, 631-5	11.5	12
245	Synthesis, Characterization, and Devices of a Series of Alternating Copolymers for Solar Cells. <i>Chemistry of Materials</i> , 2009 , 21, 3491-3502	9.6	115
244	Alternating copolymers of fluorene and donor\(\text{donor}\) cceptor\(\text{donor}\) onor segments designed for miscibility in bulk heterojunction photovoltaics. \(Journal of Materials Chemistry, \text{2009}, 19, 5359\)		26
243	Structure-property relationships of small bandgap conjugated polymers for solar cells. <i>Dalton Transactions</i> , 2009 , 10032-9	4.3	68
242	Protein biochips patterned by microcontact printing or by adsorption-soft lithography in two modes. <i>Biointerphases</i> , 2008 , 3, 75-82	1.8	8
241	High photovoltage achieved in low band gap polymer solar cells by adjusting energy levels of a polymer with the LUMOs of fullerene derivatives. <i>Journal of Materials Chemistry</i> , 2008 , 18, 5468		131
240	Charge Carrier Dynamics in Alternating Polyfluorene Copolymer:Fullerene Blends Probed by Terahertz Spectroscopy. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 6558-6563	3.8	31

239	Trapping light with micro lenses in thin film organic photovoltaic cells. Optics Express, 2008, 16, 21608-	15 3.3	126
238	Composite biomolecule/PEDOT materials for neural electrodes. <i>Biointerphases</i> , 2008 , 3, 83-93	1.8	94
237	Dynamic control of surface energy and topography of microstructured conducting polymer films. <i>Langmuir</i> , 2008 , 24, 5942-8	4	34
236	Comparative study of organic thin film tandem solar cells in alternative geometries. <i>Journal of Applied Physics</i> , 2008 , 104, 124508	2.5	19
235	Enhanced current efficiency from bio-organic light-emitting diodes using decorated amyloid fibrils with conjugated polymer. <i>Nano Letters</i> , 2008 , 8, 2858-61	11.5	46
234	Investigation on polymer anode design for flexible polymer solar cells. <i>Applied Physics Letters</i> , 2008 , 92, 233308	3.4	127
233	Optical modeling of a folded organic solar cell. <i>Journal of Applied Physics</i> , 2008 , 103, 094520	2.5	54
232	Decoration of amyloid fibrils with luminescent conjugated polymers. <i>Journal of Materials Chemistry</i> , 2008 , 18, 126-132		46
231	Multifolded polymer solar cells on flexible substrates. <i>Applied Physics Letters</i> , 2008 , 93, 033302	3.4	62
230	Limits to Nanopatterning of Fluids on Surfaces in Soft Lithography. <i>Advanced Functional Materials</i> , 2008 , 18, 2563-2571	15.6	21
229	Intrinsic and extrinsic influences on the temperature dependence of mobility in conjugated polymers. <i>Organic Electronics</i> , 2008 , 9, 569-574	3.5	17
228	Exciton dynamics in alternating polyfluorene/fullerene blends. <i>Chemical Physics</i> , 2008 , 350, 14-22	2.3	26
227	Electrochemical devices made from conducting nanowire networks self-assembled from amyloid fibrils and alkoxysulfonate PEDOT. <i>Nano Letters</i> , 2008 , 8, 1736-40	11.5	108
226	Imaging distinct conformational states of amyloid-beta fibrils in Alzheimer's disease using novel luminescent probes. <i>ACS Chemical Biology</i> , 2007 , 2, 553-60	4.9	156
225	Studies of luminescent conjugated polythiophene derivatives: enhanced spectral discrimination of protein conformational states. <i>Bioconjugate Chemistry</i> , 2007 , 18, 1860-8	6.3	66
224	Dynamics of Excited States and Charge Photogeneration in Organic Semiconductor Materials. <i>Springer Series on Fluorescence</i> , 2007 , 285-297	0.5	3
223	A New Donor Acceptor Donor Polyfluorene Copolymer with Balanced Electron and Hole Mobility. <i>Advanced Functional Materials</i> , 2007 , 17, 3836-3842	15.6	270
222	Electrode Grids for ITO Free Organic Photovoltaic Devices. <i>Advanced Materials</i> , 2007 , 19, 2893-2897	24	244

221	Enhancing the Photovoltage of Polymer Solar Cells by Using a Modified Cathode. <i>Advanced Materials</i> , 2007 , 19, 1835-1838	24	241
220	A Conjugated Polymer for Near Infrared Optoelectronic Applications. <i>Advanced Materials</i> , 2007 , 19, 33	0 & -≩31	1141
219	Conjugated Polymers as Optical Probes for Protein Interactions and Protein Conformations. <i>Macromolecular Rapid Communications</i> , 2007 , 28, 1703-1713	4.8	99
218	New low band gap alternating polyfluorene copolymer-based photovoltaic cells. <i>Solar Energy Materials and Solar Cells</i> , 2007 , 91, 1010-1018	6.4	82
217	Improvements of fill factor in solar cells based on blends of polyfluorene copolymers as electron donors. <i>Thin Solid Films</i> , 2007 , 515, 3126-3131	2.2	41
216	Quantum efficiency and two-photon absorption cross-section of conjugated polyelectrolytes used for protein conformation measurements with applications on amyloid structures. <i>Chemical Physics</i> , 2007 , 336, 121-126	2.3	31
215	Non-equilibrium effects on electronic transport in organic field effect transistors. <i>Organic Electronics</i> , 2007 , 8, 423-430	3.5	14
214	Blue light-emitting diodes based on novel polyfluorene copolymers. <i>Journal of Luminescence</i> , 2007 , 122-123, 610-613	3.8	3
213	Alignment of a conjugated polymer onto amyloid-like protein fibrils. Small, 2007, 3, 318-25	11	57
212	Towards woven logic from organic electronic fibres. <i>Nature Materials</i> , 2007 , 6, 357-62	27	376
211	Optical limitations in thin-film low-band-gap polymer/fullerene bulk heterojunction devices. <i>Applied Physics Letters</i> , 2007 , 91, 083503	3.4	11
210	Geminate charge recombination in alternating polyfluorene copolymer/fullerene blends. <i>Journal of the American Chemical Society</i> , 2007 , 129, 8466-72	16.4	133
209	Conjugated polythiophene probes target lysosome-related acidic vacuoles in cultured primary cells. <i>Molecular and Cellular Probes</i> , 2007 , 21, 329-37	3.3	33
208	Red and near infrared polarized light emissions from polyfluorene copolymer based light emitting diodes. <i>Applied Physics Letters</i> , 2007 , 90, 113510	3.4	41
207	Surface plasmon increase absorption in polymer photovoltaic cells. <i>Applied Physics Letters</i> , 2007 , 91, 113514	3.4	169
206	Folded reflective tandem polymer solar cell doubles efficiency. <i>Applied Physics Letters</i> , 2007 , 91, 12351	4 3.4	114
205	Stoichiometry, mobility, and performance in bulk heterojunction solar cells. <i>Applied Physics Letters</i> , 2007 , 91, 071108	3.4	48
204	Computer screen photo-assisted detection of complementary DNA strands using a luminescent zwitterionic polythiophene derivative. <i>Sensors and Actuators B: Chemical</i> , 2006 , 113, 410-418	8.5	20

203	Conjugated polyelectrolytesconformation-sensitive optical probes for staining and characterization of amyloid deposits. <i>ChemBioChem</i> , 2006 , 7, 1096-104	3.8	115
202	Influence of Solvent Mixing on the Morphology and Performance of Solar Cells Based on Polyfluorene Copolymer/Fullerene Blends. <i>Advanced Functional Materials</i> , 2006 , 16, 667-674	15.6	421
201	Low-Bandgap Alternating Fluorene Copolymer/Methanofullerene Heterojunctions in Efficient Near-Infrared Polymer Solar Cells. <i>Advanced Materials</i> , 2006 , 18, 2169-2173	24	311
200	Influence of solvents and substrates on the morphology and the performance of low-bandgap polyfluorene: PCBM photovoltaic devices 2006 , 6192, 339		4
199	Light confinement in thin film organic photovoltaic cells 2006,		7
198	Bipolar transport observed through extraction currents on organic photovoltaic blend materials. <i>Applied Physics Letters</i> , 2006 , 89, 142111	3.4	20
197	Acceptor influence on hole mobility in fullerene blends with alternating copolymers of fluorene. <i>Applied Physics Letters</i> , 2006 , 88, 082103	3.4	48
196	In situ Wilhelmy balance surface energy determination of poly(3-hexylthiophene) and poly(3,4-ethylenedioxythiophene) during electrochemical doping-dedoping. <i>Langmuir</i> , 2006 , 22, 9287-9	4	63
195	Electrochemical and optical studies of the band gaps of alternating polyfluorene copolymers. <i>Synthetic Metals</i> , 2006 , 156, 614-623	3.6	139
194	Transparent polymer cathode for organic photovoltaic devices. <i>Synthetic Metals</i> , 2006 , 156, 1102-1107	3.6	68
193	Soft lithographic printing of patterns of stretched DNA and DNA/electronic polymer wires by surface-energy modification and transfer. <i>Small</i> , 2006 , 2, 1068-74	11	32
192	Charge formation and transport in bulk-heterojunction solar cells based on alternating polyfluorene copolymers blended with fullerenes. <i>Organic Electronics</i> , 2006 , 7, 235-242	3.5	59
191	An alternating low band-gap polyfluorene for optoelectronic devices. <i>Polymer</i> , 2006 , 47, 4261-4268	3.9	119
190	Stoichiometry dependence of charge transport in polymer/methanofullerene and polymer/C70 derivative based solar cells. <i>Organic Electronics</i> , 2006 , 7, 195-204	3.5	42
189	A polymer photodiode using vapour-phase polymerized PEDOT as an anode. <i>Solar Energy Materials and Solar Cells</i> , 2006 , 90, 133-141	6.4	71
188	Theoretical models and experimental results on the temperature dependence of polyfluorene solar cells. <i>Solar Energy Materials and Solar Cells</i> , 2006 , 90, 1607-1614	6.4	8
187	Organic tandem solar cells hodelling and predictions. <i>Solar Energy Materials and Solar Cells</i> , 2006 , 90, 3491-3507	6.4	74
186	Polymer solar cells with low-bandgap polymers blended with C70-derivative give photocurrent at 1 fb. <i>Thin Solid Films</i> , 2006 , 511-512, 576-580	2.2	50

(2005-2006)

185	Surface energy modified chips for detection of conformational states and enzymatic activity in biomolecules. <i>Langmuir</i> , 2006 , 22, 2205-11	4	22
184	Modeling electrical transport in blend heterojunction organic solar cells. <i>Journal of Applied Physics</i> , 2005 , 97, 124901	2.5	76
183	Interactions between a Zwitterionic Polythiophene Derivative and Oligonucleotides As Resolved by Fluorescence Resonance Energy Transfer. <i>Chemistry of Materials</i> , 2005 , 17, 4204-4211	9.6	41
182	High carrier mobility in low band gap polymer-based field-effect transistors. <i>Applied Physics Letters</i> , 2005 , 87, 252105	3.4	52
181	Single molecular imaging and spectroscopy of conjugated polyelectrolytes decorated on stretched aligned DNA. <i>Nano Letters</i> , 2005 , 5, 1948-53	11.5	34
180	Synthesis of a regioregular zwitterionic conjugated oligoelectrolyte, usable as an optical probe for detection of amyloid fibril formation at acidic pH. <i>Journal of the American Chemical Society</i> , 2005 , 127, 2317-23	16.4	127
179	Design, Synthesis and Properties of Low Band Gap Polyfluorenes for Photovoltaic Devices. <i>Synthetic Metals</i> , 2005 , 154, 53-56	3.6	87
178	Synthesis and properties of polyfluorenes with phenyl substituents. <i>Synthetic Metals</i> , 2005 , 154, 97-100	3.6	22
177	Chiral Recognition of a Synthetic Peptide Using Enantiomeric Conjugated Polyelectrolytes and Optical Spectroscopy. <i>Macromolecules</i> , 2005 , 38, 6813-6821	5.5	48
176	Hydrogels from a water-soluble zwitterionic polythiophene: dynamics under pH change and biomolecular interactions observed using quartz crystal microbalance with dissipation monitoring. Langmuir, 2005 , 21, 7292-8	4	24
175	Optical optimization of polyfluorene-fullerene blend photodiodes. <i>Journal of Applied Physics</i> , 2005 , 97, 034503	2.5	93
174	Conjugated polyelectrolytes: conformation-sensitive optical probes for detection of amyloid fibril formation. <i>Biochemistry</i> , 2005 , 44, 3718-24	3.2	146
173	Dynamics of complex formation between biological and luminescent conjugated polyelectrolytes—a surface plasmon resonance study. <i>Biosensors and Bioelectronics</i> , 2005 , 20, 1764-71	11.8	24
172	Polymer Solar Cells Based on a Low-Bandgap Fluorene Copolymer and a Fullerene Derivative with Photocurrent Extended to 850 nm. <i>Advanced Functional Materials</i> , 2005 , 15, 745-750	15.6	214
171	Enhanced Photocurrent Spectral Response in Low-Bandgap Polyfluorene and C70-Derivative-Based Solar Cells. <i>Advanced Functional Materials</i> , 2005 , 15, 1665-1670	15.6	162
170	Electroactive Luminescent Self-Assembled Bio-organic Nanowires: Integration of Semiconducting Oligoelectrolytes within Amyloidogenic Proteins. <i>Advanced Materials</i> , 2005 , 17, 1466-1471	24	71
169	Optical properties of low band gap alternating copolyfluorenes for photovoltaic devices. <i>Journal of Chemical Physics</i> , 2005 , 123, 204718	3.9	78
168	Single- and bilayer submicron arrays of fluorescent polymer on conducting polymer surface with surface energy controlled dewetting. <i>Nanotechnology</i> , 2005 , 16, 437-443	3.4	25

167	Influence of buffer layers on the performance of polymer solar cells. <i>Applied Physics Letters</i> , 2004 , 84, 3906-3908	3.4	102
166	Ultrafast light-induced charge pair formation dynamics in poly[3-(2?-methoxy-5?octylphenyl)thiophene]. <i>Physical Review B</i> , 2004 , 70,	3.3	30
165	Carrier redistribution in organic/inorganic (poly(3,4-ethylenedioxy thiophene/poly(styrenesulfonate)polymer)-Si) heterojunction determined from infrared ellipsometry. <i>Applied Physics Letters</i> , 2004 , 84, 1311-1313	3.4	18
164	Infrared photocurrent spectral response from plastic solar cell with low-band-gap polyfluorene and fullerene derivative. <i>Applied Physics Letters</i> , 2004 , 85, 5081-5083	3.4	193
163	Twisting macromolecular chains: self-assembly of a chiral supermolecule from nonchiral polythiophene polyanions and random-coil synthetic peptides. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 11197-202	11.5	89
162	Polyfluorene copolymer based bulk heterojunction solar cells. <i>Thin Solid Films</i> , 2004 , 449, 152-157	2.2	48
161	Low bandgap alternating polyfluorene copolymers in plastic photodiodes and solar cells. <i>Applied Physics A: Materials Science and Processing</i> , 2004 , 79, 31-35	2.6	167
160	PEDOT surface energy pattern controls fluorescent polymer deposition by dewetting. <i>Thin Solid Films</i> , 2004 , 449, 125-132	2.2	60
159	Electrophosphorescence from substituted poly(thiophene) doped with iridium or platinum complex. <i>Thin Solid Films</i> , 2004 , 468, 226-233	2.2	24
158	Optical modelling of a layered photovoltaic device with a polyfluorene derivative/fullerene as the active layer. <i>Solar Energy Materials and Solar Cells</i> , 2004 , 83, 169-186	6.4	50
157	Enantiomeric Substituents Determine the Chirality of Luminescent Conjugated Polythiophenes. <i>Macromolecules</i> , 2004 , 37, 6316-6321	5.5	55
156	Fluorescence quenching and excitation transfer between semiconducting and metallic organic layers. <i>Journal of Applied Physics</i> , 2004 , 96, 3140-3147	2.5	8
155	Optical Emission of a Conjugated Polyelectrolyte: Calcium-Induced Conformational Changes in Calmodulin and Calmodulin Calcineurin Interactions. <i>Macromolecules</i> , 2004 , 37, 9109-9113	5.5	58
154	Correlation between oxidation potential and open-circuit voltage of composite solar cells based on blends of polythiophenes/ fullerene derivative. <i>Applied Physics Letters</i> , 2004 , 84, 1609-1611	3.4	389
153	Modeling bilayer polymer/fullerene photovoltaic devices. <i>Journal of Applied Physics</i> , 2004 , 96, 40-43	2.5	23
152	Moving Redox Fronts in Conjugated Polymers Studies from Lateral Electrochemistry in Polythiophenes. <i>Journal of the Electrochemical Society</i> , 2004 , 151, E119	3.9	46
151	Electrochromism in Diffractive Conducting Polymer Gratings. <i>Journal of the Electrochemical Society</i> , 2004 , 151, H153	3.9	23
150	Self-assembly of synthetic peptides control conformation and optical properties of a zwitterionic polythiophene derivative. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2003 , 100, 10170-4	11.5	155

149	Electrochemical bandgaps of substituted polythiophenes. <i>Journal of Materials Chemistry</i> , 2003 , 13, 1316-1323 ₂₇₁		
148	Altered impedance during pigment aggregation in Xenopus laevis melanophores. <i>Medical and Biological Engineering and Computing</i> , 2003 , 41, 357-64	3.1	7
147	High-Performance Polymer Solar Cells of an Alternating Polyfluorene Copolymer and a Fullerene Derivative. <i>Advanced Materials</i> , 2003 , 15, 988-991	24	677
146	Hydrogels of a conducting conjugated polymer as 3-D enzyme electrode. <i>Biosensors and Bioelectronics</i> , 2003 , 19, 199-207	11.8	76
145	Chip and solution detection of DNA hybridization using a luminescent zwitterionic polythiophene derivative. <i>Nature Materials</i> , 2003 , 2, 419-24	27	316
144	Photodiodes and solar cells based on the n-type polymer poly(pyridopyrazine vinylene) as electron acceptor. <i>Synthetic Metals</i> , 2003 , 138, 555-560	3.6	36
143	High photoluminescence efficiency in substituted polythiophene aggregates. <i>Synthetic Metals</i> , 2003 , 139, 303-310	3.6	26
142	Polymer optoelectronics Itowards nanometer dimensions 2003 , 65-81		
141	Organic Photodiodes: From Diodes to Blends. Springer Series in Materials Science, 2003, 249-272	0.9	2
140	Polymer Photovoltaic Cells with Conducting Polymer Anodes. <i>Advanced Materials</i> , 2002 , 14, 662-665	24	406
139	Macromolecular nanoelectronics. Current Applied Physics, 2002, 2, 27-31	2.6	11
138	Optical anisotropy in thin films of poly(3,4-ethylenedioxythiophene) poly(4-styrenesulfonate). Organic Electronics, 2002 , 3, 143-148	3.5	294
137	Polymer Hydrogel Microelectrodes for Neural Communication. <i>Biomedical Microdevices</i> , 2002 , 4, 43-52	3.7	54
136	The Cell Clinic: Closable Microvials for Single Cell Studies. <i>Biomedical Microdevices</i> , 2002 , 4, 177-187	3.7	54
135	Diffusion of Solvent in PDMS Elastomer for Micromolding in Capillaries. <i>Langmuir</i> , 2002 , 18, 9554-9559	4	24
134	Conformational transitions of a free amino-acid-functionalized polythiophene induced by different buffer systems. <i>Journal of Physics Condensed Matter</i> , 2002 , 14, 10011-10020	1.8	46
133	Submicrometre bridge electrode arrays for light emitting polymer diodes and photodiodes. <i>Nanotechnology</i> , 2002 , 13, 205-211	3.4	5
132	Regiospecifically Alkylated Oligothiophenes via Structurally Defined Building Blocks. <i>Synthesis</i> , 2002 , 2002, 1195	2.9	7

131	Conducting Polymer Nanowires and Nanodots Made with Soft Lithography. <i>Nano Letters</i> , 2002 , 2, 1373-	-1/3757	115
130	Synthesis and Characterization of Soluble and n-Dopable Poly(quinoxaline vinylene)s and Poly(pyridopyrazine vinylene)s with Relatively Small Band Gap. <i>Macromolecules</i> , 2002 , 35, 1638-1643	5.5	51
129	Synthesis of Soluble Phenyl-Substituted Poly(p-phenylenevinylenes) with a Low Content of Structural Defects. <i>Macromolecules</i> , 2002 , 35, 4997-5003	5.5	38
128	Space-charge-limited bipolar currents in polymer/C60 diodes. <i>Journal of Applied Physics</i> , 2002 , 92, 5575-	-5 <u>-</u> 55 7 7	13
127	Conductivity of de-doped poly(3,4-ethylenedioxythiophene). Synthetic Metals, 2002, 129, 269-274	3.6	61
126	Synthesis and characterization of poly(quinoxaline vinylene)s and poly(pyridopyrazine vinylene)s with phenyl substituted side-groups. <i>Synthetic Metals</i> , 2002 , 131, 53-59	3.6	14
125	Luminescence quenching by inter-chain aggregates in substituted polythiophenes. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2001 , 144, 3-12	4.7	36
124	Perpendicular Actuation with Individually Controlled Polymer Microactuators. <i>Advanced Materials</i> , 2001 , 13, 76-79	24	39
123	Lasing in a Microcavity with an Oriented Liquid-Crystalline Polyfluorene Copolymer as Active Layer. <i>Advanced Materials</i> , 2001 , 13, 323-327	24	39
			/
122	Soluble Polythiophenes with Pendant Fullerene Groups as Double Cable Materials for Photodiodes. <i>Advanced Materials</i> , 2001 , 13, 1871	24	133
122		6.7	133
	Advanced Materials, 2001, 13, 1871 Phase engineering for enhanced electrochromism in conjugated polymers. Electrochimica Acta,		
121	Advanced Materials, 2001, 13, 1871 Phase engineering for enhanced electrochromism in conjugated polymers. Electrochimica Acta, 2001, 46, 2031-2034 High luminescence from a substituted polythiophene in a solvent with low solubility. Chemical	6.7	
121	Advanced Materials, 2001, 13, 1871 Phase engineering for enhanced electrochromism in conjugated polymers. Electrochimica Acta, 2001, 46, 2031-2034 High luminescence from a substituted polythiophene in a solvent with low solubility. Chemical Physics Letters, 2001, 337, 277-283 Conformational disorder of a substituted polythiophene in solution revealed by excitation transfer.	6.7	12
121 120 119	Phase engineering for enhanced electrochromism in conjugated polymers. <i>Electrochimica Acta</i> , 2001 , 46, 2031-2034 High luminescence from a substituted polythiophene in a solvent with low solubility. <i>Chemical Physics Letters</i> , 2001 , 337, 277-283 Conformational disorder of a substituted polythiophene in solution revealed by excitation transfer. <i>Chemical Physics Letters</i> , 2001 , 339, 96-102 Determination of the emission zone in a single-layer polymer light-emitting diode through optical	6.7 2.5 2.5	12 32 59
121 120 119 118	Phase engineering for enhanced electrochromism in conjugated polymers. Electrochimica Acta, 2001, 46, 2031-2034 High luminescence from a substituted polythiophene in a solvent with low solubility. Chemical Physics Letters, 2001, 337, 277-283 Conformational disorder of a substituted polythiophene in solution revealed by excitation transfer. Chemical Physics Letters, 2001, 339, 96-102 Determination of the emission zone in a single-layer polymer light-emitting diode through optical measurements. Journal of Applied Physics, 2001, 89, 5897-5902 Quantum efficiency of exciton-to-charge generation in organic photovoltaic devices. Journal of	6.7 2.5 2.5	12 32 59 60
121 120 119 118 117	Phase engineering for enhanced electrochromism in conjugated polymers. <i>Electrochimica Acta</i> , 2001, 46, 2031-2034 High luminescence from a substituted polythiophene in a solvent with low solubility. <i>Chemical Physics Letters</i> , 2001, 337, 277-283 Conformational disorder of a substituted polythiophene in solution revealed by excitation transfer. <i>Chemical Physics Letters</i> , 2001, 339, 96-102 Determination of the emission zone in a single-layer polymer light-emitting diode through optical measurements. <i>Journal of Applied Physics</i> , 2001, 89, 5897-5902 Quantum efficiency of exciton-to-charge generation in organic photovoltaic devices. <i>Journal of Applied Physics</i> , 2001, 89, 5564-5569	6.7 2.5 2.5 2.5	12 32 59 60 64

(2000-2001)

113	Photodiodes made from poly(pyridopyrazine vinylene):polythiophene blends. <i>Synthetic Metals</i> , 2001 , 119, 185-186	3.6	15
112	Synthesis and characterisation of polyfluorenes with light-emitting segments. <i>Synthetic Metals</i> , 2001 , 121, 1761-1762	3.6	13
111	Luminescence from inter-chain aggregates in polythiophene films. Synthetic Metals, 2001, 119, 603-604	3.6	14
110	Interchain photoluminescence in substituted polyfluorenes. Synthetic Metals, 2001, 119, 615-616	3.6	7
109	Synthesis and properties of new polythiophenes with high photoluminescence efficiency. <i>Synthetic Metals</i> , 2001 , 119, 113-114	3.6	6
108	Recent progress in thin film organic photodiodes. <i>Synthetic Metals</i> , 2001 , 121, 1525-1528	3.6	34
107	Nano-structured conducting polymer network based on PEDOT-PSS. Synthetic Metals, 2001, 121, 1321-1	13,262	76
106	Charge carrier mobility in substituted polythiophene-based diodes. <i>Synthetic Metals</i> , 2001 , 125, 419-422	23.6	32
105	Synthesis and Characterization of Poly(pyridine vinylene) via the Sulfinyl Precursor Route. <i>Macromolecules</i> , 2001 , 34, 7294-7299	5.5	29
104	Influence of Polymerization Temperature on Molecular Weight, Photoluminescence, and Electroluminescence for a Phenyl-Substituted Poly(p-phenylenevinylene). <i>Macromolecules</i> , 2001 , 34, 3716-3719	5.5	30
103	Intra- and Interchain Luminescence in Amorphous and Semicrystalline Films of Phenyl-Substituted Polythiophene. <i>Journal of Physical Chemistry B</i> , 2001 , 105, 7624-7631	3.4	51
102	Synthesis and Characterization of Polyfluorenes with Light-Emitting Segments. <i>Macromolecules</i> , 2001 , 34, 1981-1986	5.5	17
101	Trapping Light in Polymer Photodiodes with Soft Embossed Gratings. Advanced Materials, 2000 , 12, 189	-1.95	141
100	Patterning of Polymer Light-Emitting Diodes with Soft Lithography. <i>Advanced Materials</i> , 2000 , 12, 269-2	273	158
99	Excitation Transfer in Polymer Photodiodes for Enhanced Quantum Efficiency. <i>Advanced Materials</i> , 2000 , 12, 1110-1114	24	48
98	Polymer Photovoltaic Devices from Stratified Multilayers of DonorAcceptor Blends. <i>Advanced Materials</i> , 2000 , 12, 1367-1370	24	88
97	The use of combinatorial materials development for polymer solar cells. <i>Advanced Materials for Optics and Electronics</i> , 2000 , 10, 47-54		20
96	Good adhesion between chemically oxidised titanium and electrochemically deposited polypyrrole. <i>Electrochimica Acta</i> , 2000 , 45, 2121-2130	6.7	47

95	Self organised polymer photodiodes for extended spectral coverage. <i>Thin Solid Films</i> , 2000 , 363, 286-28	9 .2	14
94	Ultrafast photogeneration of inter-chain charge pairs in polythiophene films. <i>Chemical Physics Letters</i> , 2000 , 322, 136-142	2.5	72
93	Electrochemical Characterization of Poly(3,4-ethylene dioxythiophene) Based Conducting Hydrogel Networks. <i>Journal of the Electrochemical Society</i> , 2000 , 147, 1872	3.9	50
92	Structural Anisotropy of Poly(alkylthiophene) Films. <i>Macromolecules</i> , 2000 , 33, 3120-3127	5.5	147
91	Structural aspects of electrochemical doping and dedoping of poly(3,4-ethylenedioxythiophene). <i>Synthetic Metals</i> , 2000 , 113, 93-97	3.6	96
90	Characteristics of polythiophene surface light emitting diodes. Synthetic Metals, 2000, 113, 103-114	3.6	31
89	A convenient synthetic route to poly(p-phenylene-1,2-diphenylvinylenes). <i>Synthetic Metals</i> , 2000 , 113, 293-297	3.6	7
88	Photovoltaic cells with a conjugated polyelectrolyte. <i>Synthetic Metals</i> , 2000 , 110, 133-140	3.6	74
87	Microrobots for micrometer-size objects in aqueous media: potential tools for single-cell manipulation. <i>Science</i> , 2000 , 288, 2335-8	33.3	447
86	Synthesis and Characterization of Highly Soluble Phenyl-Substituted Poly(p-phenylenevinylenes). <i>Macromolecules</i> , 2000 , 33, 2525-2529	5.5	73
85	Structural Ordering in Phenyl-Substituted Polythiophenes. <i>Macromolecules</i> , 2000 , 33, 5481-5489	5.5	51
84	On-chip microelectrodes for electrochemistry with moveable PPy bilayer actuators as working electrodes. <i>Sensors and Actuators B: Chemical</i> , 1999 , 56, 73-78	8.5	38
83	Controlling inter-chain and intra-chain excitations of a poly(thiophene) derivative in thin films. <i>Chemical Physics Letters</i> , 1999 , 304, 84-90	2.5	41
82	MATERIALS SCIENCE:Carbon Nanotube Muscles. <i>Science</i> , 1999 , 284, 1281-1282	33.3	25
81	Lasing in substituted polythiophene between dielectric mirrors. Synthetic Metals, 1999, 102, 1038-1041	3.6	8
80	Structure of thin films of poly(3,4-ethylenedioxythiophene). Synthetic Metals, 1999, 101, 561-564	3.6	312
79	Self-assembly of a conducting polymer nanostructure by physical crosslinking: applications to conducting blends and modified electrodes. <i>Synthetic Metals</i> , 1999 , 101, 413-416	3.6	62
78	Synthesis of regioregular phenyl substituted polythiophenes with FeCl3. <i>Synthetic Metals</i> , 1999 , 101, 11-12	3.6	50

77	Polypyrrole micro actuators. <i>Synthetic Metals</i> , 1999 , 102, 1309-1310	3.6	75
76	Multifunctional polythiophenes in photodiodes. <i>Synthetic Metals</i> , 1999 , 102, 977-978	3.6	14
75	Synthesis and characterization of soluble high molecular weight phenylsubstituted ppv-derivatives. <i>Synthetic Metals</i> , 1999 , 101, 56-57	3.6	10
74	Anisotropic optical properties of doped poly(3,4-ethylenedioxythiophene). <i>Synthetic Metals</i> , 1999 , 101, 198-199	3.6	61
73	Photoluminescence Properties of Polythiophenes. Synthetic Metals, 1999, 101, 331-332	3.6	21
72	Enhanced photo conversion efficiency utilizing interference inside organic heteroj unction photovoltaic devices. <i>Synthetic Metals</i> , 1999 , 102, 1107	3.6	8
71	All-solid-state photoelectrochemical energy conversion with the conjugated polymer poly[3-(4-octylphenyl)-2,2?-bithiophene]. <i>Synthetic Metals</i> , 1999 , 107, 97-105	3.6	30
70	Photophysics of Substituted Polythiophenes. <i>Journal of Physical Chemistry B</i> , 1999 , 103, 7771-7780	3.4	131
69	Substituted polythiophenes designed for optoelectronic devices and conductors. <i>Journal of Materials Chemistry</i> , 1999 , 9, 1933-1940		225
68	Modeling photocurrent action spectra of photovoltaic devices based on organic thin films. <i>Journal of Applied Physics</i> , 1999 , 86, 487-496	2.5	1248
68 67		2.5	1248
	of Applied Physics, 1999, 86, 487-496 The Influence of Ordering on the Photoinduced Charge Transfer in Composites of Phenyl-type Substituted Polythiophenes with Methanofullerenes. <i>Materials Research Society Symposia</i>	2.5 6.7	1248
67	of Applied Physics, 1999, 86, 487-496 The Influence of Ordering on the Photoinduced Charge Transfer in Composites of Phenyl-type Substituted Polythiophenes with Methanofullerenes. <i>Materials Research Society Symposia Proceedings</i> , 1999, 598, 200		,
67 66	of Applied Physics, 1999, 86, 487-496 The Influence of Ordering on the Photoinduced Charge Transfer in Composites of Phenyl-type Substituted Polythiophenes with Methanofullerenes. Materials Research Society Symposia Proceedings, 1999, 598, 200 Polymer electrolytes in optical devices. Electrochimica Acta, 1998, 43, 1615-1621	6.7	6
67 66 65	of Applied Physics, 1999, 86, 487-496 The Influence of Ordering on the Photoinduced Charge Transfer in Composites of Phenyl-type Substituted Polythiophenes with Methanofullerenes. Materials Research Society Symposia Proceedings, 1999, 598, 200 Polymer electrolytes in optical devices. Electrochimica Acta, 1998, 43, 1615-1621 A polythiophene microcavity laser. Chemical Physics Letters, 1998, 288, 879-884 Synthesis and Properties of a Soluble Conjugated Poly(azomethine) with High Molecular Weight.	6.7 2.5	6 98
67 66 65 64	of Applied Physics, 1999, 86, 487-496 The Influence of Ordering on the Photoinduced Charge Transfer in Composites of Phenyl-type Substituted Polythiophenes with Methanofullerenes. Materials Research Society Symposia Proceedings, 1999, 598, 200 Polymer electrolytes in optical devices. Electrochimica Acta, 1998, 43, 1615-1621 A polythiophene microcavity laser. Chemical Physics Letters, 1998, 288, 879-884 Synthesis and Properties of a Soluble Conjugated Poly(azomethine) with High Molecular Weight. Macromolecules, 1998, 31, 2676-2678 Spectroscopic ellipsometry studies of the optical properties of doped	6.7 2.5 5·5	6 98 75
67 66 65 64 63	The Influence of Ordering on the Photoinduced Charge Transfer in Composites of Phenyl-type Substituted Polythiophenes with Methanofullerenes. <i>Materials Research Society Symposia Proceedings</i> , 1999 , 598, 200 Polymer electrolytes in optical devices. <i>Electrochimica Acta</i> , 1998 , 43, 1615-1621 A polythiophene microcavity laser. <i>Chemical Physics Letters</i> , 1998 , 288, 879-884 Synthesis and Properties of a Soluble Conjugated Poly(azomethine) with High Molecular Weight. <i>Macromolecules</i> , 1998 , 31, 2676-2678 Spectroscopic ellipsometry studies of the optical properties of doped poly(3,4-ethylenedioxythiophene): an anisotropic metal. <i>Thin Solid Films</i> , 1998 , 313-314, 356-361	6.7 2.5 5.5 2.2	6 98 75

59	Supramolecular Self-Assembly for Enhanced Conductivity in Conjugated Polymer Blends: Ionic Crosslinking in Blends of Poly(3,4-ethylenedioxythiophene)-Poly(styrenesulfonate) and Poly(vinylpyrrolidone). <i>Advanced Materials</i> , 1998 , 10, 1097-1099	24	100
58	Optical emission from confined poly(thiophene) chains. <i>Optical Materials</i> , 1998 , 9, 104-108	3.3	29
57	Planar microfabricated polymer light-emitting diodes. <i>Semiconductor Science and Technology</i> , 1998 , 13, 433-439	1.8	16
56	Towards Supramolecular Assembly of Organic Solids for Optical Functions. <i>Molecular Crystals and Liquid Crystals</i> , 1998 , 314, 257-265		
55	High Quantum Efficiency Polythiophene 1998 , 10, 774		6
54	Interference phenomenon determines the color in an organic light emitting diode. <i>Journal of Applied Physics</i> , 1997 , 81, 8097-8104	2.5	103
53	Self organizing polymer films route to novel electronic devices based on conjugated polymers. <i>Supramolecular Science</i> , 1997 , 4, 27-34		31
52	Photodiode performance and nanostructure of polythiophene/C60 blends. <i>Advanced Materials</i> , 1997 , 9, 1164-1168	24	161
51	The electrical properties of junctions between aluminium and doped polypyrrole. <i>Journal Physics D: Applied Physics</i> , 1996 , 29, 2971-2975	3	33
50	Three-Step Redox in Polythiophenes: Evidence from Electrochemistry at an Ultramicroelectrode. <i>The Journal of Physical Chemistry</i> , 1996 , 100, 15202-15206		165
49	Polymer light-emitting diodes placed in microcavities. Synthetic Metals, 1996, 76, 121-123	3.6	26
48	Polymeric light-emitting diodes of submicron size latructures and developments. <i>Synthetic Metals</i> , 1996 , 76, 141-143	3.6	63
47	The electronic and geometric structures of neutral and potassium-doped poly [3-(4-octylphenyl)thiophene] studied by photoelectron spectroscopy. <i>Synthetic Metals</i> , 1996 , 76, 263-26	3 .6	6
46	The electronic structure of neutral and alkali metal-doped poly[3-(4-octylphenyl)thiophene] studied by photoelectron spectroscopy. <i>Synthetic Metals</i> , 1996 , 80, 59-66	3.6	16
45	Polymer-electrolyte-based photoelectrochemical solar energy conversion with poly(3-methylthiophene) photoactive electrode. <i>Synthetic Metals</i> , 1996 , 82, 215-220	3.6	40
44	Electrochemically Induced Volume Changes in Poly(3,4-ethylenedioxythiophene). <i>Chemistry of Materials</i> , 1996 , 8, 2439-2443	9.6	71
43	Contributions to the temperature dependent band gap in conjugated polymers: A Monte Carlo simulation. <i>Journal of Chemical Physics</i> , 1996 , 105, 8446-8452	3.9	
42	White light emission from a polymer blend light emitting diode. <i>Applied Physics Letters</i> , 1996 , 68, 147-14	19.4	301

41	Patterning of poly(3-octylthiophene) conducting polymer films by electron beam exposure. <i>Advanced Materials</i> , 1996 , 8, 405-408	24	40
40	The influence of polymerization rate on conductivity and crystallinity of electropolymerized polypyrrole. <i>Polymer</i> , 1996 , 37, 2609-2613	3.9	27
39	Controlling colour by voltage in polymer light emitting diodes. <i>Synthetic Metals</i> , 1995 , 71, 2185-2186	3.6	75
38	Doping-induced volume changes in poly(3-octylthiophene) solids and gels. <i>Synthetic Metals</i> , 1995 , 74, 159-164	3.6	47
37	Polarized electroluminescence from an oriented substituted polythiophene in a light emitting diode. <i>Advanced Materials</i> , 1995 , 7, 43-45	24	217
36	Ultraviolet electroluminescence from an organic light emitting diode. Advanced Materials, 1995 , 7, 900	-9 £ β	68
35	Flexible arrays of submicrometer-sized polymeric light emitting diodes. <i>Advanced Materials</i> , 1995 , 7, 1012-1015	24	63
34	Anisotropic dc conductivity in stretch-oriented iodine-doped poly[3-(4-octylphenyl)-2,2?-bithiophene]. <i>Journal of Applied Physics</i> , 1994 , 76, 7915-7919	2.5	5
33	Electrochromic and highly stable poly(3,4-ethylenedioxythiophene) switches between opaque blue-black and transparent sky blue. <i>Polymer</i> , 1994 , 35, 1347-1351	3.9	590
32	Electrically conductive composite prepared by template polymerization of pyrrole into a complexed polymer. <i>Journal of Polymer Science Part A</i> , 1994 , 32, 495-502	2.5	13
31	Green Electroluminescence in Poly-(3-cyclohexylthiophene) light-emitting diodes. <i>Advanced Materials</i> , 1994 , 6, 488-490	24	68
30	Light-emitting diodes with variable colours from polymer blends. <i>Nature</i> , 1994 , 372, 444-446	50.4	682
29	White light from an electroluminescent diode made from poly[3(4-octylphenyl)-2,2Ebithiophene] and an oxadiazole derivative. <i>Journal of Applied Physics</i> , 1994 , 76, 7530-7534	2.5	119
28	Thermochromism and optical absorption in Langmuir B lodgett films of alkyl-substituted polythiophenes. <i>Journal of Applied Physics</i> , 1994 , 76, 893-899	2.5	44
27	Thermal control of near-infrared and visible electroluminescence in alkyl-phenyl substituted polythiophenes. <i>Applied Physics Letters</i> , 1994 , 65, 1489-1491	3.4	65
26	Electrochemical muscles: Bending strips built from conjugated polymers. <i>Synthetic Metals</i> , 1993 , 57, 3718-3723	3.6	83
25	Conjugated polymers as smart materials, gas sensors and actuators using bending beams. <i>Synthetic Metals</i> , 1993 , 57, 3730-3735	3.6	47
24	Electroelastomers: Conjugated poly(3-octylthiophene) gels with controlled crosslinking. <i>Synthetic Metals</i> , 1993 , 57, 3724-3729	3.6	22

23	Bending bilayer strips built from polyaniline for artificial electrochemical muscles. <i>Smart Materials and Structures</i> , 1993 , 2, 1-6	3.4	80
22	Conducting polymers as artificial muscles: challenges and possibilities. <i>Journal of Micromechanics and Microengineering</i> , 1993 , 3, 203-205	2	61
21	Electrochemical muscles: Micromachining fingers and corkscrews. <i>Advanced Materials</i> , 1993 , 5, 630-632	24	104
20	Electrically conducting copolymers from 3-octylthiophene and 3-methylthiophene. <i>Polymer</i> , 1993 , 34, 247-252	3.9	14
19	Photoluminescence quenching in a polymer thin-film field-effect luministor. <i>Journal of Applied Physics</i> , 1992 , 71, 2816-2820	2.5	77
18	Properties of the planar poly(3-octylthiophene)/aluminum Schottky barrier diode. <i>Journal of Applied Physics</i> , 1992 , 72, 2900-2906	2.5	53
17	Poly(3-octylthiophene-co-3-methylthiophene), a processible and stable conducting copolymer. <i>Synthetic Metals</i> , 1992 , 46, 353-357	3.6	17
16	Rectifying metal-polymer contacts formed by melt processing. <i>Applied Physics Letters</i> , 1990 , 57, 733-734	4 3.4	22
15	Electroactive polymer blends. British Polymer Journal, 1988, 20, 233-236		24
14	Field-effect mobility of poly(3-hexylthiophene). Applied Physics Letters, 1988, 53, 195-197	3.4	358
14	Field-effect mobility of poly(3-hexylthiophene). <i>Applied Physics Letters</i> , 1988 , 53, 195-197 Self-Discharge Rate of the Polypyrrole-Polyethylene Oxide Composite Electrode. <i>Journal of the Electrochemical Society</i> , 1988 , 135, 2485-2490	3.4	358
	Self-Discharge Rate of the Polypyrrole-Polyethylene Oxide Composite Electrode. <i>Journal of the</i>		
13	Self-Discharge Rate of the Polypyrrole-Polyethylene Oxide Composite Electrode. <i>Journal of the Electrochemical Society</i> , 1988 , 135, 2485-2490 Composite Polymer Positive Electrodes in Solid-State Lithium Secondary Batteries. <i>Journal of the</i>	3.9	38
13	Self-Discharge Rate of the Polypyrrole-Polyethylene Oxide Composite Electrode. <i>Journal of the Electrochemical Society</i> , 1988 , 135, 2485-2490 Composite Polymer Positive Electrodes in Solid-State Lithium Secondary Batteries. <i>Journal of the Electrochemical Society</i> , 1987 , 134, 1341-1345	3.9	38
13 12 11	Self-Discharge Rate of the Polypyrrole-Polyethylene Oxide Composite Electrode. <i>Journal of the Electrochemical Society</i> , 1988 , 135, 2485-2490 Composite Polymer Positive Electrodes in Solid-State Lithium Secondary Batteries. <i>Journal of the Electrochemical Society</i> , 1987 , 134, 1341-1345 Some potential applications for conductive polymers. <i>Synthetic Metals</i> , 1987 , 21, 13-19 Cycling behaviour of the polypyrrolepolyethylene oxide composite electrode. <i>Journal of Power</i>	3.9 3.9 3.6 8.9	38 36 12
13 12 11	Self-Discharge Rate of the Polypyrrole-Polyethylene Oxide Composite Electrode. <i>Journal of the Electrochemical Society</i> , 1988 , 135, 2485-2490 Composite Polymer Positive Electrodes in Solid-State Lithium Secondary Batteries. <i>Journal of the Electrochemical Society</i> , 1987 , 134, 1341-1345 Some potential applications for conductive polymers. <i>Synthetic Metals</i> , 1987 , 21, 13-19 Cycling behaviour of the polypyrrolepolyethylene oxide composite electrode. <i>Journal of Power Sources</i> , 1987 , 21, 17-24	3.9 3.9 3.6 8.9	38 36 12 24
13 12 11 10	Self-Discharge Rate of the Polypyrrole-Polyethylene Oxide Composite Electrode. <i>Journal of the Electrochemical Society</i> , 1988 , 135, 2485-2490 Composite Polymer Positive Electrodes in Solid-State Lithium Secondary Batteries. <i>Journal of the Electrochemical Society</i> , 1987 , 134, 1341-1345 Some potential applications for conductive polymers. <i>Synthetic Metals</i> , 1987 , 21, 13-19 Cycling behaviour of the polypyrrolepolyethylene oxide composite electrode. <i>Journal of Power Sources</i> , 1987 , 21, 17-24 A new route to polythiophene and copolymers of thiophene and pyrrole. <i>Synthetic Metals</i> , 1985 , 11, 239 A Photoelectrochromic Memory and Display Device Based on Conducting Polymers. <i>Journal of the</i>	3.9 3.9 3.6 8.9	38 36 12 24 89

LIST OF PUBLICATIONS

5	Charge transport in microcrystalline chlorophyll-a: Temperature dependence and gas effects. <i>Thin Solid Films</i> , 1981 , 85, 129-139	2.2	3
4	Black Charcoal for Green and Scalable Wooden Electrodes for Supercapabatteries. <i>Energy Technology</i> ,2101072	3.5	
3	Water-in-Polymer Salt Electrolyte for Slow Self-Discharge in Organic Batteries. <i>Advanced Energy and Sustainability Research</i> ,2100165	1.6	6
2	Bio Based Batteries. Advanced Energy Materials,2003713	21.8	6
1	Quinones from Biopolymers and Small Molecules Milled into Graphite Electrodes. <i>Advanced Materials Technologies</i> ,2001042	6.8	2