Fei You

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5383600/publications.pdf

Version: 2024-02-01

1478505 1474206 20 95 6 9 citations h-index g-index papers 20 20 20 68 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Evolution and mechanisms of low-temperature oxidation and coal–oxygen coupling processes of a specific low-rank bituminous coal with various microscale particle sizes. International Journal of Coal Preparation and Utilization, 2023, 43, 308-328.	2.1	1
2	Low-temperature oxidation and self-heating accelerated spontaneous combustion properties of a Yima formation bituminous coal with various moisture contents. International Journal of Coal Preparation and Utilization, 2022, 42, 2722-2741.	2.1	5
3	Synergistically improved flame retardancy of the cotton fabric finished by silica-coupling agent-zinc borate hybrid sol. Journal of Industrial Textiles, 2022, 51, 8297S-8322S.	2.4	6
4	Thermal Aging Analyses of a Gearbox oil Used for Wind Turbine Nacelles. Journal of Physics: Conference Series, 2022, 2166, 012047.	0.4	0
5	Breakdown Characteristics of Rod-Plane Gap in An Ethanol Flame. IEEE Transactions on Dielectrics and Electrical Insulation, 2022, , $1 \cdot 1$.	2.9	1
6	Preparations, characterizations, thermal and flame retardant properties of cotton fabrics finished by boron-silica sol-gel coatings. Polymer Degradation and Stability, 2022, 202, 110011.	5.8	11
7	Prediction of the failure probability of the overhead power line exposed to large-scale jet fires induced by high-pressure gas leakage. International Journal of Hydrogen Energy, 2021, 46, 2413-2431.	7.1	10
8	Characteristics and Mechanism of Line-Line Gap Breakdowns Induced by Wood Crib Fires. , 2021, , .		0
9	Prevention of green energy loss: Estimation of fire hazard potential in wind turbines. Renewable Energy, 2019, 140, 62-69.	8.9	10
10	Simulation and Early Warning Design of Fire Resistance Characteristics of Steel Structure Towers for High Voltage Transmission Lines. , 2019, , .		0
11	Temperature Evolution Properties of Overhead Line Conductor Exposed to Large-scale Jet Fires Induced by High-pressure Natural Gas Leakage. , 2019, , .		1
12	Characteristics and Mechanisms of Rod-Rod Electrode Gap Breakdown Induced by High-temperature and Clean Flame. , $2019, \ldots$		0
13	Flame Retardancy and Mechanism of Cotton Fabric Finished by Phosphorus Containing SiO ₂ Hybrid Sol., 2019,,.		3
14	Smoldering Initiation and Propagation Characteristics of Mixed Melamine Foam and Flexible Polyurethane Foam. , $2019, , .$		0
15	Flame Retardant Effects of Fabrics Finished by Hybrid Nano-Micro Silica-based Sols. Procedia Engineering, 2018, 211, 160-168.	1.2	13
16	Effects of Bulk Densities and Inlet Airflow Velocities on Forward Smoldering Propagation Properties of Flexible Polyurethane Foam. Procedia Engineering, 2018, 211, 762-767.	1.2	9
17	Pyrolysis Properties and Flame Retardant Effects of Fabrics Finished by Hybrid Silica-based Sols. Procedia Engineering, 2018, 211, 1091-1101.	1.2	6
18	Chemical modification at and within nanopowders: Synthesis of coreâ€shell Al 2 O 3 @Ti ON nanopowders via nitriding nanoâ€(TiO 2) 0.43 (Al 2 O 3) 0.57 powders in NH 3. Journal of the American Ceramic Society, 2018, 101, 1441-1452.	3.8	2

#	Article	IF	CITATIONS
19	Flammability hazards of typical fuels used in wind turbine nacelle. Fire and Materials, 2018, 42, 770-781.	2.0	8
20	Experimental and Computational Approaches for CH ₄ and C ₂ H ₄ Flammability Zones. Energy & Substitution (Substitution of Substitution of Substit	5.1	9