Amir Sharabi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5383456/publications.pdf Version: 2024-02-01

AMID SHADARI

#	Article	IF	CITATIONS
1	Updates on Clinical Trials in Systemic Lupus Erythematosus. Current Rheumatology Reports, 2021, 23, 57.	2.1	2
2	Adult-onset Still's disease following mRNA COVID-19 vaccination. Clinical Immunology, 2021, 233, 108878.	1.4	25
3	Systemic lupus erythematosus favors the generation of IL-17 producing double negative T cells. Nature Communications, 2020, 11, 2859.	5.8	59
4	T cell metabolism: new insights in systemic lupus erythematosus pathogenesis and therapy. Nature Reviews Rheumatology, 2020, 16, 100-112.	3.5	174
5	Serine/threonine phosphatase PP2A is essential for optimal B cell function. JCI Insight, 2020, 5, .	2.3	9
6	PPP2R2D suppresses IL-2 production and Treg function. JCI Insight, 2020, 5, .	2.3	14
7	T Cells in Autoimmune Diseases. , 2019, , 29-36.		0
8	PP2A enables IL-2 signaling by preserving IL-2RÎ ² chain expression during Treg development. JCI Insight, 2019, 4, .	2.3	18
9	The serine/threonine protein phosphatase 2A controls autoimmunity. Clinical Immunology, 2018, 186, 38-42.	1.4	40
10	Regulatory T cells in the treatment of disease. Nature Reviews Drug Discovery, 2018, 17, 823-844.	21.5	224
11	Indoleamine-2,3-dioxygenase in murine and human systemic lupus erythematosus: Down-regulation by the tolerogeneic peptide hCDR1. Clinical Immunology, 2018, 197, 34-39.	1.4	2
12	The tolerogenic peptide hCDR1 immunomodulates cytokine and regulatory molecule gene expression in blood mononuclear cells of primary Sjogren's syndrome patients. Clinical Immunology, 2018, 192, 85-91.	1.4	8
13	Precision DNA demethylation ameliorates disease in lupus-prone mice. JCI Insight, 2018, 3, .	2.3	42
14	Editorial: Molecules Balancing Immunological Surveillance against Cancer and Autoimmune Diseases. Frontiers in Oncology, 2016, 6, 86.	1.3	0
15	Empowering Regulatory T Cells in Autoimmunity. Trends in Molecular Medicine, 2016, 22, 784-797.	3.5	49
16	The Effect of the Presence of Fibromyalgia on Common Clinical Disease Activity Indices in Patients with Psoriatic Arthritis: A Cross-sectional Study. Journal of Rheumatology, 2016, 43, 1749-1754.	1.0	85
17	Induced Sputum Analysis in Subjects With Systemic Sclerosis. Respiratory Care, 2016, 61, 1369-1373.	0.8	4
18	Rituximab as a Second-Line Treatment for Lymphocytic Vasculitis of the Central Nervous System. Israel Medical Association Journal, 2016, 18, 630-632.	0.1	2

AMIR SHARABI

#	Article	IF	CITATIONS
19	Novel approaches to the development of targeted therapeutic agents for systemic lupus erythematosus. Journal of Autoimmunity, 2014, 54, 60-71.	3.0	39
20	The Tolerogenic Peptide, hCDR1, Down-Regulates the Expression of Interferon-α in Murine and Human Systemic Lupus Erythematosus. PLoS ONE, 2013, 8, e60394.	1.1	31
21	A role for the B-cell CD74/macrophage migration inhibitory factor pathway in the immunomodulation of systemic lupus erythematosus by a therapeutic tolerogenic peptide. Immunology, 2011, 132, 87-95.	2.0	33
22	Induction of hippocampal neurogenesis by a tolerogenic peptide that ameliorates lupus manifestations. Journal of Neuroimmunology, 2011, 232, 151-157.	1.1	18
23	Immune Recovery after Cyclophosphamide Treatment in Multiple Myeloma: Implication for Maintenance Immunotherapy. Bone Marrow Research, 2011, 2011, 1-7.	1.7	34
24	A New Model of Induced Experimental Systemic Lupus Erythematosus (SLE) in Pigs and Its Amelioration by Treatment with a Tolerogenic Peptide. Journal of Clinical Immunology, 2010, 30, 34-44.	2.0	12
25	A novel tolerogenic peptide, hCDR1, for the specific treatment of systemic lupus erythematosus. Autoimmunity Reviews, 2010, 10, 22-26.	2.5	29
26	Chemoimmunotherapy Reduces the Progression of Multiple Myeloma in a Mouse Model. Cancer Prevention Research, 2010, 3, 1265-1276.	0.7	28
27	Bcl-xL is required for the development of functional regulatory CD4 cells in lupus-afflicted mice following treatment with a tolerogenic peptide. Journal of Autoimmunity, 2010, 34, 87-95.	3.0	24
28	Breaking Tolerance in a Mouse Model of Multiple Myeloma by Chemoimmunotherapy. Advances in Cancer Research, 2010, 107, 1-37.	1.9	21
29	Bcl-xL affects the development of functional CD4 Tregs. Arthritis Research and Therapy, 2010, 12, 405.	1.6	3
30	In Vivo Dynamical Interactions between CD4 Tregs, CD8 Tregs and CD4+CD25â^² Cells in Mice. PLoS ONE, 2009, 4, e8447.	1.1	21
31	Harnessing regulatory T cells for the therapy of lupus and other autoimmune diseases. Immunotherapy, 2009, 1, 385-401.	1.0	7
32	B-cell activating factor (BAFF) plays a role in the mechanism of action of a tolerogenic peptide that ameliorates lupus. Clinical Immunology, 2009, 131, 223-232.	1.4	19
33	A tolerogenic peptide that induces suppressor of cytokine signaling (SOCS)-1 restores the aberrant control of IFN-I3 signaling in lupus-affected (NZB×NZW)F1 mice. Clinical Immunology, 2009, 133, 61-68.	1.4	16
34	Amelioration of brain pathology and behavioral dysfunction in mice with lupus following treatment with a tolerogenic peptide. Arthritis and Rheumatism, 2009, 60, 3744-3754.	6.7	30
35	A tolerogenic peptide downâ€regulates mature B cells in bone marrow of lupusâ€afflicted mice by inhibition of interleukinâ€7, leading to apoptosis. Immunology, 2009, 128, 245-252.	2.0	7
36	The tolerogenic peptide hCDR1 downregulates pathogenic cytokines and apoptosis and upregulates immunosuppressive molecules and regulatory T cells in peripheral blood mononuclear cells of lupus patients. Human Immunology, 2009, 70, 139-145.	1.2	29

AMIR SHARABI

#	Article	IF	CITATIONS
37	Treatment of lupus patients with a tolerogenic peptide, hCDR1 (Edratide): Immunomodulation of gene expression. Journal of Autoimmunity, 2009, 33, 77-82.	3.0	50
38	The role of dendritic cells in the mechanism of action of a peptide that ameliorates lupus in murine models. Immunology, 2009, 128, e395-405.	2.0	25
39	The Suppression of Murine Lupus by a Tolerogenic Peptide Involves Foxp3-Expressing CD8 Cells That Are Required for the Optimal Induction and Function of Foxp3-Expressing CD4 Cells. Journal of Immunology, 2008, 181, 3243-3251.	0.4	56
40	A novel synthetic peptide for the specific treatment of lupus: clinical effects and mechanism of action. Israel Medical Association Journal, 2008, 10, 40-2.	0.1	6
41	The role of CD8+CD28 regulatory cells in suppressing myasthenia gravis-associated responses by a dual altered peptide ligand. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 17459-17464.	3.3	47
42	The Role of Apoptosis in the Ameliorating Effects of a CDR1-Based Peptide on Lupus Manifestations in a Mouse Model. Journal of Immunology, 2007, 179, 4979-4987.	0.4	30
43	Altered gene expression in mice with lupus treated with edratide, a peptide that ameliorates the disease manifestations. Arthritis and Rheumatism, 2007, 56, 2371-2381.	6.7	14
44	Clinical amelioration of murine lupus by a peptide based on the complementarity determining region-1 of an autoantibody and by cyclophosphamide: similarities and differences in the mechanisms of action. Immunology, 2007, 121, 248-257.	2.0	35
45	Amelioration of murine lupus by a peptide, based on the complementarity determining region-1 of an autoantibody as compared to dexamethasone: Different effects on cytokines and apoptosis. Clinical Immunology, 2006, 119, 146-155.	1.4	44
46	A peptide based on the complementarity-determining region 1 of an autoantibody ameliorates lupus by up-regulating CD4+CD25+ cells and TGF-beta. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 8810-8815.	3.3	86
47	Amelioration of SLE-like manifestations in (NZBxNZW)F1 mice following treatment with a peptide based on the complementarity determining region 1 of an autoantibody is associated with a down-regulation of apoptosis and of the pro-apoptotic factor JNK kinase. Clinical Immunology, 2005, 117, 262-270.	1.4	43
48	Replacement therapy for vitamin B12 deficiency: comparison between the sublingual and oral route. British Journal of Clinical Pharmacology, 2003, 56, 635-638.	1.1	55