

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5383215/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Coaxial nozzle-assisted 3D bioprinting with built-in microchannels for nutrients delivery. Biomaterials, 2015, 61, 203-215.	5.7	486
2	3D Bioprinting: A Novel Avenue for Manufacturing Tissues and Organs. Engineering, 2019, 5, 777-794.	3.2	133
3	3D bioprinting: an emerging technology full of opportunities and challenges. Bio-Design and Manufacturing, 2018, 1, 2-13.	3.9	110
4	Towards personalized medicine with a three-dimensional micro-scale perfusion-based two-chamber tissue model system. Biomaterials, 2012, 33, 4353-4361.	5.7	75
5	3D printing of calcium phosphate bioceramic with tailored biodegradation rate for skull bone tissue reconstruction. Bio-Design and Manufacturing, 2019, 2, 161-171.	3.9	70
6	3D bioprinting for artificial cornea: Challenges and perspectives. Medical Engineering and Physics, 2019, 71, 68-78.	0.8	61
7	Current Advances on 3Dâ€Bioprinted Liver Tissue Models. Advanced Healthcare Materials, 2020, 9, e2001517.	3.9	60
8	CHI3L1 promotes tumor progression by activating TGF-β signaling pathway in hepatocellular carcinoma. Scientific Reports, 2018, 8, 15029.	1.6	57
9	Light-Induced Cell Alignment and Harvest for Anisotropic Cell Sheet Technology. ACS Applied Materials & Interfaces, 2017, 9, 36513-36524.	4.0	43
10	Surface hydroxyl groups regulate the osteogenic differentiation of mesenchymal stem cells on titanium and tantalum metals. Journal of Materials Chemistry B, 2017, 5, 3955-3963.	2.9	38
11	Biofabrication of aligned structures that guide cell orientation and applications in tissue engineering. Bio-Design and Manufacturing, 2021, 4, 258-277.	3.9	32
12	Integrated 3D bioprinting-based geometry-control strategy for fabricating corneal substitutes. Journal of Zhejiang University: Science B, 2019, 20, 945-959.	1.3	31
13	A porous 3D cell culture micro device for cell migration study. Biomedical Microdevices, 2010, 12, 753-760.	1.4	29
14	The comparison genomics analysis with glioblastoma multiforme (GBM) cells under 3D and 2D cell culture conditions. Colloids and Surfaces B: Biointerfaces, 2018, 172, 665-673.	2.5	27
15	3D bioprinted hyaluronic acid-based cell-laden scaffold for brain microenvironment simulation. Bio-Design and Manufacturing, 2020, 3, 164-174.	3.9	27
16	Large-Area Periodic Organic–Inorganic Hybrid Perovskite Nanopyramid Arrays for High-Performance Photodetector and Image Sensor Applications. , 2021, 3, 1189-1196.		23
17	Fabrication of bioactive glass-introduced nanofibrous membranes with multifunctions for potential wound dressing. RSC Advances, 2014, 4, 60114-60122.	1.7	22
18	Engineered Vasculature for Organ-on-a-Chip Systems. Engineering, 2022, 9, 131-147.	3.2	22

Liang

#	Article	IF	CITATIONS
19	The construction of in vitro tumor models based on 3D bioprinting. Bio-Design and Manufacturing, 2020, 3, 227-236.	3.9	19
20	Opportunities and Challenges: Classification of Skin Disease Based on Deep Learning. Chinese Journal of Mechanical Engineering (English Edition), 2021, 34, .	1.9	19
21	High-resolution 3D Bioprinting System for Fabricating Cell-laden Hydrogel Scaffolds with High Cellular Activities. Procedia CIRP, 2017, 65, 219-224.	1.0	16
22	Surface Modification by Divalent Main-Group-Elemental lons for Improved Bone Remodeling To Instruct Implant Biofabrication. ACS Biomaterials Science and Engineering, 2019, 5, 3311-3324.	2.6	15
23	Direct 3â€D printing of Tiâ€6Alâ€4V/HA composite porous scaffolds for customized mechanical properties and biological functions. Journal of Tissue Engineering and Regenerative Medicine, 2020, 14, 486-496.	1.3	15
24	3D Printed Multi-material Medical Phantoms for Needle-tissue Interaction Modelling of Heterogeneous Structures. Journal of Bionic Engineering, 2021, 18, 346-360.	2.7	14
25	Nano―and Microfabrication for Engineering Native‣ike Muscle Tissues. Small Methods, 2020, 4, 1900669.	4.6	13
26	Recent progress on the design and fabrication of micromotors and their biomedical applications. Bio-Design and Manufacturing, 2018, 1, 225-236.	3.9	12
27	One-dimensional microstructure-assisted intradermal and intracellular delivery. Bio-Design and Manufacturing, 2019, 2, 24-30.	3.9	8
28	Whole genome sequencing of matched tumor, adjacent non-tumor tissues and corresponding normal blood samples of hepatocellular carcinoma patients revealed dynamic changes of the mutations profiles during hepatocarcinogenesis. Oncotarget, 2017, 8, 26185-26199.	0.8	8
29	Identification of Novel SNPs by Next-Generation Sequencing of the Genomic Region Containing the <i>APC</i> Gene in Colorectal Cancer Patients in China. OMICS A Journal of Integrative Biology, 2010, 14, 315-325.	1.0	7
30	Strengths, weaknesses, and applications of computational axial lithography in tissue engineering. Bio-Design and Manufacturing, 2020, 3, 5-6.	3.9	7
31	Systematic comparison of biologically active foreign ions-codoped calcium phosphate microparticles on osteogenic differentiation in rat osteoporotic and normal mesenchymal stem cells. Oncotarget, 2017, 8, 36578-36590.	0.8	5
32	Research lab on 3D bioprinting of Zhejiang University. Bio-Design and Manufacturing, 2018, 1, 211-214.	3.9	4
33	Exome sequencing identified six copy number variations as a prediction model for recurrence of primary prostate cancers with distinctive prognosis. Translational Cancer Research, 2020, 9, 2231-2242.	0.4	4
34	Smart bioelectronics and biomedical devices. Bio-Design and Manufacturing, 2022, 5, 1-5.	3.9	4
35	ALK5 transfection of bone marrow mesenchymal stem cells to repair osteoarthritis of knee joint. Bio-Design and Manufacturing, 2018, 1, 135-145.	3.9	1
36	Industry news: 2020 high-impact publications in the BDM area. Bio-Design and Manufacturing, 2021, 4, 154-156.	3.9	1