## William D Pearse

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5382822/publications.pdf Version: 2024-02-01



WILLIAM D PEADSE

| #  | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Functional traits, the phylogeny of function, and ecosystem service vulnerability. Ecology and Evolution, 2013, 3, 2958-2975.                                                                                         | 0.8 | 424       |
| 2  | Using ecological thresholds to evaluate the costs and benefits of set-asides in a biodiversity hotspot.<br>Science, 2014, 345, 1041-1045.                                                                             | 6.0 | 337       |
| 3  | Multiple facets of biodiversity drive the diversity–stability relationship. Nature Ecology and Evolution, 2018, 2, 1579-1587.                                                                                         | 3.4 | 296       |
| 4  | Global imprint of mycorrhizal fungi on whole-plant nutrient economics. Proceedings of the National<br>Academy of Sciences of the United States of America, 2019, 116, 23163-23168.                                    | 3.3 | 169       |
| 5  | <i>pez</i> : phylogenetics for the environmental sciences. Bioinformatics, 2015, 31, 2888-2890.                                                                                                                       | 1.8 | 146       |
| 6  | Prioritizing phylogenetic diversity captures functional diversity unreliably. Nature Communications, 2018, 9, 2888.                                                                                                   | 5.8 | 144       |
| 7  | Open Science principles for accelerating trait-based science across the Tree of Life. Nature Ecology and Evolution, 2020, 4, 294-303.                                                                                 | 3.4 | 144       |
| 8  | On the relationship between phylogenetic diversity and trait diversity. Ecology, 2018, 99, 1473-1479.                                                                                                                 | 1.5 | 136       |
| 9  | SoilTemp: A global database of nearâ€surface temperature. Global Change Biology, 2020, 26, 6616-6629.                                                                                                                 | 4.2 | 122       |
| 10 | Global biogeography of seed dormancy is determined by seasonality and seed size: a case study in the<br>legumes. New Phytologist, 2017, 214, 1527-1536.                                                               | 3.5 | 112       |
| 11 | Temperature and population density influence SARS-CoV-2 transmission in the absence of nonpharmaceutical interventions. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, . | 3.3 | 95        |
| 12 | phyloGenerator: an automated phylogeny generation tool for ecologists. Methods in Ecology and Evolution, 2013, 4, 692-698.                                                                                            | 2.2 | 85        |
| 13 | A statistical estimator for determining the limits of contemporary and historic phenology. Nature Ecology and Evolution, 2017, 1, 1876-1882.                                                                          | 3.4 | 81        |
| 14 | What we (don't) know about global plant diversity. Ecography, 2019, 42, 1819-1831.                                                                                                                                    | 2.1 | 79        |
| 15 | Convergence of microclimate in residential landscapes across diverse cities in the United States.<br>Landscape Ecology, 2016, 31, 101-117.                                                                            | 1.9 | 78        |
| 16 | Herbivores at the highest risk of extinction among mammals, birds, and reptiles. Science Advances, 2020, 6, eabb8458.                                                                                                 | 4.7 | 73        |
| 17 | Homogenization of plant diversity, composition, and structure in North American urban yards.<br>Ecosphere, 2018, 9, e02105.                                                                                           | 1.0 | 68        |
| 18 | Assessing the utility of conserving evolutionary history. Biological Reviews, 2019, 94, 1740-1760.                                                                                                                    | 4.7 | 65        |

WILLIAM D PEARSE

| #  | Article                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Towards an ecoâ€phylogenetic framework for infectious disease ecology. Biological Reviews, 2018, 93,<br>950-970.                                                                           | 4.7 | 63        |
| 20 | Functional biogeography of angiosperms: life at the extremes. New Phytologist, 2018, 218, 1697-1709.                                                                                       | 3.5 | 61        |
| 21 | Bee phenology is predicted by climatic variation and functional traits. Ecology Letters, 2020, 23, 1589-1598.                                                                              | 3.0 | 55        |
| 22 | Taking the Long View: Integrating Recorded, Archeological, Paleoecological, and Evolutionary Data into Ecological Restoration. International Journal of Plant Sciences, 2016, 177, 90-102. | 0.6 | 48        |
| 23 | Global macroevolution and macroecology of passerine song. Evolution; International Journal of<br>Organic Evolution, 2018, 72, 944-960.                                                     | 1.1 | 34        |
| 24 | Combining phylogeny and coâ€occurrence to improve single species distribution models. Global<br>Ecology and Biogeography, 2017, 26, 740-752.                                               | 2.7 | 33        |
| 25 | Evolution of mammalian migrations for refuge, breeding, and food. Ecology and Evolution, 2017, 7, 5891-5900.                                                                               | 0.8 | 30        |
| 26 | Horticultural availability and homeowner preferences drive plant diversity and composition in urban yards. Ecological Applications, 2020, 30, e02082.                                      | 1.8 | 30        |
| 27 | Building up biogeography: Pattern to process. Journal of Biogeography, 2018, 45, 1223-1230.                                                                                                | 1.4 | 25        |
| 28 | Barro Colorado Island's phylogenetic assemblage structure across fine spatial scales and among clades of different ages. Ecology, 2013, 94, 2861-2872.                                     | 1.5 | 24        |
| 29 | Metrics and Models of Community Phylogenetics. , 2014, , 451-464.                                                                                                                          |     | 23        |
| 30 | Macrophenology: insights into the broadâ€scale patterns, drivers, and consequences of phenology.<br>American Journal of Botany, 2021, 108, 2112-2126.                                      | 0.8 | 20        |
| 31 | The effect of phylogenetic uncertainty and imputation on <scp>EDGE</scp> Scores. Animal Conservation, 2019, 22, 527-536.                                                                   | 1.5 | 19        |
| 32 | Beyond the EDGE with EDAM: Prioritising British Plant Species According to Evolutionary Distinctiveness, and Accuracy and Magnitude of Decline. PLoS ONE, 2015, 10, e0126524.              | 1.1 | 14        |
| 33 | The interaction of phylogeny and community structure: Linking the community composition and trait evolutionÂof clades. Global Ecology and Biogeography, 2019, 28, 1499-1511.               | 2.7 | 14        |
| 34 | The hidden value of trees: Quantifying the ecosystem services of tree lineages and their major threats across the contiguous US. , 2022, 1, e0000010.                                      |     | 14        |
| 35 | Reply to: "Global conservation of phylogenetic diversity captures more than just functional diversity― Nature Communications, 2019, 10, 858.                                               | 5.8 | 13        |
| 36 | The Use of EDGE (Evolutionary Distinct Globally Endangered) and EDGE-Like Metrics to Evaluate Taxa for Conservation. , 2018, , 27-39.                                                      |     | 12        |

WILLIAM D PEARSE

| #  | ARTICLE                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Cryptic diversity in the model fern genus Ceratopteris (Pteridaceae). Molecular Phylogenetics and Evolution, 2020, 152, 106938.                                                          | 1.2 | 11        |
| 38 | Climate and lawn management interact to control C4plant distribution in residential lawns across seven U.S. cities. Ecological Applications, 2019, 29, e01884.                           | 1.8 | 8         |
| 39 | Phylogenetic generalized linear mixed modeling presents novel opportunities for ecoâ€evolutionary synthesis. Oikos, 2021, 130, 669-679.                                                  | 1.2 | 6         |
| 40 | Commercial Plant Production and Consumption Still Follow the Latitudinal Gradient in Species Diversity despite Economic Globalization. PLoS ONE, 2016, 11, e0163002.                     | 1.1 | 6         |
| 41 | There and Back Again: Reticulate Evolution in Ceratopteris. American Fern Journal, 2020, 110, .                                                                                          | 0.2 | 6         |
| 42 | Predicting catchment suitability for biodiversity at national scales. Water Research, 2022, 221, 118764.                                                                                 | 5.3 | 5         |
| 43 | Suppdata: Downloading Supplementary Data from Published Manuscripts. Journal of Open Source<br>Software, 2018, 3, 721.                                                                   | 2.0 | 4         |
| 44 | Fractal triads efficiently sample ecological diversity and processes across spatial scales. Oikos, 2021, 130, 2136-2147.                                                                 | 1.2 | 4         |
| 45 | Conserving Brazil's Atlantic forests—Response. Science, 2014, 346, 1193-1193.                                                                                                            | 6.0 | 3         |
| 46 | Complexity is complicated and so too is comparing complexity metricsâ€A response to Mikula etÂal. (2018).<br>Evolution; International Journal of Organic Evolution, 2018, 72, 2836-2838. | 1.1 | 3         |
| 47 | Declining Summertime <i>p</i> CO <sub>2</sub> in Tundra Lakes in a Granitic Landscape. Global<br>Biogeochemical Cycles, 2021, 35, e2020GB006850.                                         | 1.9 | 3         |
| 48 | Strong trait correlation and phylogenetic signal in North American ground beetle (Carabidae)<br>morphology. Ecosphere, 2021, 12, .                                                       | 1.0 | 3         |
| 49 | Response to Comment on "Using ecological thresholds to evaluate the costs and benefits of set-asides in a biodiversity hotspot― Science, 2015, 347, 731-731.                             | 6.0 | 2         |
| 50 | Phylogenetic diversity efficiently and accurately prioritizes conservation of aquatic macroinvertebrate communities. Ecosphere, 2021, 12, e03383.                                        | 1.0 | 1         |
| 51 | Saving the Forest from the Trees: Expert Views on Funding Restoration of Northern Arizona<br>Ponderosa Pine Forests through Registered Carbon Offsets. Forests, 2021, 12, 1119.          | 0.9 | 1         |
| 52 | Preserving evolutionary history with improved confidence. Animal Conservation, 2019, 22, 541-542.                                                                                        | 1.5 | 0         |
| 53 | SymbiotaR2: An R Package for Accessing Symbiota2 Data. Journal of Open Source Software, 2020, 5, 2917.                                                                                   | 2.0 | 0         |