
Sarantos Psycharis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5382098/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The effects of computer programming on high school students' reasoning skills and mathematical self-efficacy and problem solving. Instructional Science, 2017, 45, 583-602.	2.0	92
2	Moodle as a Learning Environment in Promoting Conceptual Understanding for Secondary School Students. Eurasia Journal of Mathematics, Science and Technology Education, 2013, 9, .	1.3	36
3	The Impact of a STEM Inquiry Game Learning Scenario on Computational Thinking and Computer Self-confidence. Eurasia Journal of Mathematics, Science and Technology Education, 2019, 15, .	1.3	27
4	The Impact of Computational Experiment and Formative Assessment in Inquiry-Based Teaching and Learning Approach in STEM Education. Journal of Science Education and Technology, 2016, 25, 316-326.	3.9	22
5	The computational experiment and its effects on approach to learning and beliefs on physics. Computers and Education, 2011, 56, 547-555.	8.3	20
6	Examining the effect of the computational models on learning performance, scientific reasoning, epistemic beliefs and argumentation: An implication for the STEM agenda. Computers and Education, 2013, 68, 253-265.	8.3	19
7	The teaching of Natural Sciences in kindergarten based on the principles of STEM and STEAM approach. Advanced Journal of Nursing, 2022, 2, 268-277.	2.4	15
8	Action Research Implementation in Developing an Open Source and Low Cost Robotic Platform for STEM Education. International Journal of Computer Applications, 2019, 178, 33-46.	0.2	14
9	The impact of the computational inquiry based experiment on metacognitive experiences, modelling indicators and learning performance. Computers and Education, 2014, 72, 90-99.	8.3	13
10	Emotional experiences in simulated classroom training environments. International Journal of Information and Learning Technology, 2016, 33, 172-185.	2.3	13
11	A Study of the Impact of Arduino and Visual Programming In Self-Efficacy, Motivation, Computational Thinking and 5th Grade Students' Perceptions on Electricity. Eurasia Journal of Mathematics, Science and Technology Education, 2021, 17, em1960.	1.3	13
12	Innovative Robot for Educational Robotics and STEM. Lecture Notes in Computer Science, 2020, , 95-104.	1.3	12
13	DuBot. Advances in Educational Technologies and Instructional Design Book Series, 2021, , 441-465.	0.2	11
14	A Didactic Scenario for Implementation of Computational Thinking using Inquiry Game Learning. , 2017, , .		9
15	Discovery Learning and the Computational Experiment in Higher Mathematics and Science Education: A Combined Approach. International Journal of Emerging Technologies in Learning, 2009, 4, 25.	1.3	7
16	Unfolding the Curriculum: Physical Computing, Computational Thinking and Computational Experiment in STEM's Transdisciplinary Approach. European Journal of Engineering Research and Science, 2018, , 19.	0.3	7
17	The relationship between task structure and collaborative group interactions in a synchronous peer interaction collaborative learning environment for a course of Physics. Education and Information Technologies, 2008, 13, 119-128.	5.7	6

18 DuBot. , 2021, , 329-353.

#	Article	IF	CITATIONS
19	The Impact of Physical Computing and Computational Pedagogy on Girl's Self – Efficacy and Computational Thinking Practice. , 2021, , .		5
20	Measuring the Impact on Student's Computational Thinking Skills Through STEM and Educational Robotics Project Implementation. Advances in Early Childhood and K-12 Education, 2020, , 238-288.	0.2	4
21	Computational Thinking, Engineering Epistemology and STEM Epistemology: A Primary Approach to Computational Pedagogy. Advances in Intelligent Systems and Computing, 2019, , 689-698.	0.6	4
22	Exploring the Effects of the Computational Experiment Approach to the Epistemic Beliefs, the Motivation, the Use of Modeling Indicators and Conceptual Understanding in Three Different Computational Learning Environments. Journal of Education and Training Studies, 2012, 1, .	0.2	3
23	Assesement And Integrated Steam In Engineering Education. , 2022, , .		3
24	Calculation of the Hubble Universe Expansion Constant by Analyzing Observational Data: An Exploratory Teaching Proposal based on STEM Epistemology. , 2020, , .		2
25	An advanced Physical Computing - based Educational Robot Platform evaluated by Technology Acceptance Model. , 2022, , .		2