Ming Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5381963/publications.pdf

Version: 2024-02-01

68 papers 3,296 citations

30 h-index 54 g-index

71 all docs

71 docs citations

times ranked

71

3034 citing authors

#	Article	IF	CITATIONS
1	GmDREB2, a soybean DRE-binding transcription factor, conferred drought and high-salt tolerance in transgenic plants. Biochemical and Biophysical Research Communications, 2007, 353, 299-305.	1.0	391
2	Drought-responsive WRKY transcription factor genes TaWRKY1 and TaWRKY33 from wheat confer drought and/or heat resistance in Arabidopsis. BMC Plant Biology, 2016, 16, 116.	1.6	293
3	Identification and characterization of GmMYB118 responses to drought and salt stress. BMC Plant Biology, 2018, 18, 320.	1.6	173
4	The WRKY Transcription Factor GmWRKY12 Confers Drought and Salt Tolerance in Soybean. International Journal of Molecular Sciences, 2018, 19, 4087.	1.8	137
5	Cold-induced modulation and functional analyses of the DRE-binding transcription factor gene, GmDREB3, in soybean (Glycine max L.). Journal of Experimental Botany, 2009, 60, 121-135.	2.4	135
6	Occurrence of 13 veterinary drugs in animal manure-amended soils in Eastern China. Chemosphere, 2016, 144, 2377-2383.	4.2	107
7	Wheat CBL-interacting protein kinase 23 positively regulates drought stress and ABA responses. BMC Plant Biology, 2018, 18, 93.	1.6	98
8	Genome-Wide Characterization and Expression Analysis of Soybean TGA Transcription Factors Identified a Novel TGA Gene Involved in Drought and Salt Tolerance. Frontiers in Plant Science, 2019, 10, 549.	1.7	97
9	Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice. BMC Genomics, 2016, 17, 797.	1.2	86
10	Genomic Analysis of Stress Associated Proteins in Soybean and the Role of GmSAP16 in Abiotic Stress Responses in Arabidopsis and Soybean. Frontiers in Plant Science, 2019, 10, 1453.	1.7	79
11	Overexpression of TaCOMT Improves Melatonin Production and Enhances Drought Tolerance in Transgenic Arabidopsis. International Journal of Molecular Sciences, 2019, 20, 652.	1.8	74
12	Improved drought tolerance in wheat plants overexpressing a synthetic bacterial cold shock protein gene SeCspA. Scientific Reports, 2017, 7, 44050.	1.6	73
13	A G-Protein \hat{I}^2 Subunit, AGB1, Negatively Regulates the ABA Response and Drought Tolerance by Down-Regulating AtMPK6-Related Pathway in Arabidopsis. PLoS ONE, 2015, 10, e0116385.	1.1	70
14	The E-Subgroup Pentatricopeptide Repeat Protein Family in Arabidopsis thaliana and Confirmation of the Responsiveness PPR96 to Abiotic Stresses. Frontiers in Plant Science, 2016, 7, 1825.	1.7	68
15	Overexpression of soybean DREB1 enhances drought stress tolerance of transgenic wheat in the field. Journal of Experimental Botany, 2020, 71, 1842-1857.	2.4	68
16	SiMYB56 Confers Drought Stress Tolerance in Transgenic Rice by Regulating Lignin Biosynthesis and ABA Signaling Pathway. Frontiers in Plant Science, 2020, 11, 785.	1.7	68
17	The Soybean bZIP Transcription Factor Gene GmbZIP2 Confers Drought and Salt Resistances in Transgenic Plants. International Journal of Molecular Sciences, 2020, 21, 670.	1.8	60
18	Genome-Wide Analysis of CDPK Family in Foxtail Millet and Determination of SiCDPK24 Functions in Drought Stress. Frontiers in Plant Science, 2018, 9, 651.	1.7	52

#	Article	IF	CITATIONS
19	Genome-Wide Analysis of the GRAS Gene Family and Functional Identification of GmGRAS37 in Drought and Salt Tolerance. Frontiers in Plant Science, 2020, 11, 604690.	1.7	52
20	The <scp>NFâ€Yâ€PYR</scp> module integrates the abscisic acid signal pathway to regulate plant stress tolerance. Plant Biotechnology Journal, 2021, 19, 2589-2605.	4.1	52
21	Characteristics and Expression Patterns of the Aldehyde Dehydrogenase (ALDH) Gene Superfamily of Foxtail Millet (Setaria italica L.). PLoS ONE, 2014, 9, e101136.	1.1	51
22	Overexpression of TaHSF3 in Transgenic Arabidopsis Enhances Tolerance to Extreme Temperatures. Plant Molecular Biology Reporter, 2013, 31, 688-697.	1.0	49
23	Genome-Wide Identification, Evolution, and Expression of GDSL-Type Esterase/Lipase Gene Family in Soybean. Frontiers in Plant Science, 2020, 11, 726.	1.7	47
24	Overexpression of GmNFYA5 confers drought tolerance to transgenic Arabidopsis and soybean plants. BMC Plant Biology, 2020, 20, 123.	1.6	46
25	Investigation of the ASR family in foxtail millet and the role of ASR1 in drought/oxidative stress tolerance. Plant Cell Reports, 2016, 35, 115-128.	2.8	45
26	Genome-wide investigation and expression analyses of the pentatricopeptide repeat protein gene family in foxtail millet. BMC Genomics, 2016, 17, 840.	1,2	43
27	Chlorophyll Synthase under Epigenetic Surveillance Is Critical for Vitamin E Synthesis, and Altered Expression Affects Tocopherol Levels in Arabidopsis. Plant Physiology, 2015, 168, 1503-1511.	2.3	40
28	Genome-Wide Analysis of LIM Family Genes in Foxtail Millet (Setaria italica L.) and Characterization of the Role of SiWLIM2b in Drought Tolerance. International Journal of Molecular Sciences, 2019, 20, 1303.	1.8	39
29	Complete Genome Sequence of the Type Strain Pseudomonas stutzeri CGMCC 1.1803. Journal of Bacteriology, 2011, 193, 6095-6095.	1.0	35
30	The ABA-induced soybean ERF transcription factor gene GmERF75 plays a role in enhancing osmotic stress tolerance in Arabidopsis and soybean. BMC Plant Biology, 2019, 19, 506.	1.6	33
31	A virus-derived siRNA activates plant immunity by interfering with ROS scavenging. Molecular Plant, 2021, 14, 1088-1103.	3.9	33
32	Functional Analysis of the Soybean GmCDPK3 Gene Responding to Drought and Salt Stresses. International Journal of Molecular Sciences, 2019, 20, 5909.	1.8	31
33	Durable field resistance to wheat yellow mosaic virus in transgenic wheat containing the antisense virus polymerase gene. Plant Biotechnology Journal, 2014, 12, 447-456.	4.1	30
34	The G-Protein \hat{I}^2 Subunit AGB1 Promotes Hypocotyl Elongation through Inhibiting Transcription Activation Function of BBX21 in \hat{A} Arabidopsis. Molecular Plant, 2017, 10, 1206-1223.	3.9	30
35	Genome-Wide Analysis of the C3H Zinc Finger Transcription Factor Family and Drought Responses of Members in Aegilops tauschii. Plant Molecular Biology Reporter, 2014, 32, 1241-1256.	1.0	29
36	The Roles of GmERF135 in Improving Salt Tolerance and Decreasing ABA Sensitivity in Soybean. Frontiers in Plant Science, 2019, 10, 940.	1.7	28

#	Article	IF	CITATIONS
37	The Ankyrin-Repeat Gene GmANK114 Confers Drought and Salt Tolerance in Arabidopsis and Soybean. Frontiers in Plant Science, 2020, 11, 584167.	1.7	28
38	AP2/ERF transcription factor GmDREB1 confers drought tolerance in transgenic soybean by interacting with GmERFs. Plant Physiology and Biochemistry, 2022, 170, 287-295.	2.8	28
39	The Elongation Factor GmEF4 Is Involved in the Response to Drought and Salt Tolerance in Soybean. International Journal of Molecular Sciences, 2019, 20, 3001.	1.8	26
40	Genome-Wide Analysis of the DYW Subgroup PPR Gene Family and Identification of GmPPR4 Responses to Drought Stress. International Journal of Molecular Sciences, 2019, 20, 5667.	1.8	26
41	The Wheat Bax Inhibitor-1 Protein Interacts with an Aquaporin TaPIP1 and Enhances Disease Resistance in Arabidopsis. Frontiers in Plant Science, 2018, 9, 20.	1.7	22
42	Expression Analyses of Soybean VOZ Transcription Factors and the Role of GmVOZ1G in Drought and Salt Stress Tolerance. International Journal of Molecular Sciences, 2020, 21, 2177.	1.8	21
43	Wheat Bax Inhibitor-1 interacts with TaFKBP62 and mediates response to heat stress. BMC Plant Biology, 2018, 18, 259.	1.6	19
44	Genome-Wide Analysis of the DUF4228 Family in Soybean and Functional Identification of GmDUF4228–70 in Response to Drought and Salt Stresses. Frontiers in Plant Science, 2021, 12, 628299.	1.7	19
45	Overexpression of GmUBC9 Gene Enhances Plant Drought Resistance and Affects Flowering Time via Histone H2B Monoubiquitination. Frontiers in Plant Science, 2020, 11, 555794.	1.7	17
46	GmNFYA13 Improves Salt and Drought Tolerance in Transgenic Soybean Plants. Frontiers in Plant Science, 2020, 11, 587244.	1.7	16
47	Genome-Wide Analysis of the Catharanthus roseus RLK1-Like in Soybean and GmCrRLK1L20 Responds to Drought and Salt Stresses. Frontiers in Plant Science, 2021, 12, 614909.	1.7	16
48	Genome-Wide Analysis of DEAD-box RNA Helicase Family in Wheat (Triticum aestivum) and Functional Identification of TaDEAD-box57 in Abiotic Stress Responses. Frontiers in Plant Science, 2021, 12, 797276.	1.7	16
49	Genomic-Wide Analysis of the PLC Family and Detection of GmPI-PLC7 Responses to Drought and Salt Stresses in Soybean. Frontiers in Plant Science, 2021, 12, 631470.	1.7	15
50	Induction Kinetics of a Novel Stress-related LEA Gene in Wheat. Plant Molecular Biology Reporter, 2012, 30, 1313-1321.	1.0	14
51	Transcriptome Differences in Response Mechanisms to Low-Nitrogen Stress in Two Wheat Varieties. International Journal of Molecular Sciences, 2021, 22, 12278.	1.8	14
52	<i>GmTDN1</i> improves wheat yields by inducing dual tolerance to both drought and lowâ€N stress. Plant Biotechnology Journal, 2022, 20, 1606-1621.	4.1	14
53	Mitogenâ€activated protein kinase <scp>TaMPK3</scp> suppresses <scp>ABA</scp> response by destabilising <scp>TaPYL4</scp> receptor in wheat. New Phytologist, 2022, 236, 114-131.	3.5	14
54	Histone deacetylase AtSRT2 regulates salt tolerance during seed germination via repression of vesicleâ€associated membrane protein 714 (VAMP714) in ⟨i>Arabidopsis⟨ i>. New Phytologist, 2022, 234, 1278-1293.	3 . 5	13

#	Article	IF	Citations
55	Genome-Wide Analysis of the Soybean TIFY Family and Identification of GmTIFY10e and GmTIFY10g Response to Salt Stress. Frontiers in Plant Science, 2022, 13, 845314.	1.7	12
56	Genome-Wide Analysis of the Soybean Calmodulin-Binding Protein 60 Family and Identification of GmCBP60A-1 Responses to Drought and Salt Stresses. International Journal of Molecular Sciences, 2021, 22, 13501.	1.8	12
57	Isolation and identification of a wheat gene encoding a zinc finger protein (TaZnFP) responsive to abiotic stresses. Acta Physiologiae Plantarum, 2013, 35, 1597-1604.	1.0	11
58	Arabidopsis G-Protein \hat{I}^2 Subunit AGB1 Negatively Regulates DNA Binding of MYB62, a Suppressor in the Gibberellin Pathway. International Journal of Molecular Sciences, 2021, 22, 8270.	1.8	11
59	Comprehensive Profiling of Tubby-Like Proteins in Soybean and Roles of the GmTLP8 Gene in Abiotic Stress Responses. Frontiers in Plant Science, 2022, 13, 844545.	1.7	10
60	Nuclear transport factor GmNTF2Bâ€1 enhances soybean drought tolerance by interacting with oxidoreductase GmOXR17 to reduce reactive oxygen species content. Plant Journal, 2021, 107, 740-759.	2.8	9
61	A soybean EF-Tu family protein GmEF8, an interactor of GmCBL1, enhances drought and heat tolerance in transgenic Arabidopsis and soybean. International Journal of Biological Macromolecules, 2022, 205, 462-472.	3.6	9
62	Isolation and Characterization of GmSTY1, a Novel Gene Encoding a Dual-Specificity Protein Kinase in Soybean (Glycine max L.). Journal of Integrative Plant Biology, 2006, 48, 857-866.	4.1	8
63	Genome-Wide Analysis of the C2 Domain Family in Soybean and Identification of a Putative Abiotic Stress Response Gene GmC2-148. Frontiers in Plant Science, 2021, 12, 620544.	1.7	8
64	Genomic Analysis of Soybean PP2A-B′′ Family and Its Effects on Drought and Salt Tolerance. Frontiers in Plant Science, 2021, 12, 784038.	1.7	5
65	Overexpression of V-type H+ pyrophosphatase gene EdVP1 from Elymus dahuricus increases yield and potassium uptake of transgenic wheat under low potassium conditions. Scientific Reports, 2020, 10, 5020.	1.6	4
66	Flow Karyotyping of Wheat Addition Line "T240―with a Haynaldia villosa 6VS Telosome. Plant Molecular Biology Reporter, 2013, 31, 289-295.	1.0	3
67	Knockdown of sphingomyelinase (<scp><i>NlSMase</i></scp>) causes ovarian malformation of brown planthopper, <i>Nilaparvata lugens</i> (St¥l). Insect Molecular Biology, 2022, 31, 391-402.	1.0	2
68	Interconnection algorithm of a wide range of pervasive devices for the Internet of things. International Journal of Distributed Sensor Networks, 2018, 14, 155014771875601.	1.3	1