
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5381730/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	HMF hydrogenolysis over carbon-supported Ni–Cu catalysts to produce hydrogenated biofuels. Energy, 2022, 255, 124437.	4.5	8
2	Integrated Environmental and Exergoeconomic Analysis of Biomassâ€Derived Maleic Anhydride. Advanced Sustainable Systems, 2022, 6, .	2.7	6
3	New insights into Mn2O3 based metal oxide granulation technique with enhanced chemical and mechanical stability for thermochemical energy storage in packed bed reactors. Solar Energy, 2022, 241, 248-261.	2.9	4
4	Influence of morphology of zirconium-doped mesoporous silicas on 5-hydroxymethylfurfural production from mono-, di- and polysaccharides. Catalysis Today, 2021, 367, 297-309.	2.2	6
5	Influence of Lewis acidity and CaCl2 on the direct transformation of glucose to 5-hydroxymethylfurfural. Molecular Catalysis, 2021, 510, 111685.	1.0	6
6	Pyrolysis of Forestry Waste in a Screw Reactor with Four Sequential Heating Zones: Influence of Isothermal and Nonisothermal Profiles. Industrial & Engineering Chemistry Research, 2021, 60, 18627-18639.	1.8	7
7	Insights into the Nature of the Active Sites of Pt-WOx/Al2O3 Catalysts for Glycerol Hydrogenolysis into 1,3-Propanediol. Catalysts, 2021, 11, 1171.	1.6	8
8	Development of a kinetic reaction model for reduction and oxidation of Si doped Mn2O3 for thermochemical energy storage in concentrated solar power plants. Journal of Energy Storage, 2021, 43, 103271.	3.9	2
9	Process design and techno-economic analysis of gas and aqueous phase maleic anhydride production from biomass-derived furfural. Biomass Conversion and Biorefinery, 2020, 10, 1021-1033.	2.9	23
10	Ni–Cu Bimetallic Catalytic System for Producing 5-Hydroxymethylfurfural-Derived Value-Added Biofuels. ACS Sustainable Chemistry and Engineering, 2020, 8, 11183-11193.	3.2	22
11	Improving the redox performance of Mn2O3/Mn3O4 pair by Si doping to be used as thermochemical energy storage for concentrated solar power plants. Solar Energy, 2020, 204, 144-154.	2.9	29
12	Oxidation of lignocellulosic platform molecules to value-added chemicals using heterogeneous catalytic technologies. Catalysis Science and Technology, 2020, 10, 2721-2757.	2.1	60
13	Preface to International Symposium of Catalysis for Clean Energy and Sustainable Chemistry (CCESC2018). Topics in Catalysis, 2019, 62, 427-428.	1.3	0
14	Hydrometallurgical processes for Waelz oxide valorisation – An overview. Chemical Engineering Research and Design, 2019, 129, 308-320.	2.7	22
15	Efficiency improvement of Mn2O3/Mn3O4 redox reaction by means of different operation strategies. AIP Conference Proceedings, 2019, , .	0.3	5
16	Furanic biofuels production from biomass using Cu-based heterogeneous catalysts. Energy, 2019, 172, 531-544.	4.5	20
17	Thin PdCu membrane for hydrogen purification from in-situ produced methane reforming complex mixtures containing H2S. Chemical Engineering Science, 2018, 176, 429-438.	1.9	13
18	Solvent and catalyst effect in the formic acid aided lignin-to-liquids. Bioresource Technology, 2018, 270, 529-536.	4.8	18

PEDRO LUIS ARIAS

#	Article	IF	CITATIONS
19	Catalyst Deactivation and Regeneration Processes in Biogas Tri-Reforming Process. The Effect of Hydrogen Sulfide Addition. Catalysts, 2018, 8, 12.	1.6	38
20	New insights into the corrosion mechanism between molten nitrate salts and ceramic materials for packed bed thermocline systems: A case study for steel slag and Solar salt. Solar Energy, 2018, 173, 152-159.	2.9	16
21	Production of 2-methylfuran from biomass through an integrated biorefinery approach. Fuel Processing Technology, 2018, 178, 336-343.	3.7	32
22	Amination of Furfural. Sustainable Chemistry Series, 2018, , 191-196.	0.1	1
23	2-Methyl Tetrahydrofuran (MTHF) and its Use as Biofuel. Sustainable Chemistry Series, 2018, , 137-155.	0.1	0
24	2-Methyl Furan and Derived Biofuels. Sustainable Chemistry Series, 2018, , 111-136.	0.1	0
25	Tetrahydrofurfuryl Alcohol and Derivatives. Sustainable Chemistry Series, 2018, , 79-89.	0.1	0
26	Furfuryl Alcohol and Derivatives. Sustainable Chemistry Series, 2018, , 55-78.	0.1	0
27	Preparation and characterization of ceramic supported ultra-thin (~1 Âμm) Pd-Ag membranes. Journal of Membrane Science, 2017, 528, 12-23.	4.1	57
28	Streamlined life cycle analysis for assessing energy and exergy performance as well as impact on the climate for landfill gas utilization technologies. Applied Energy, 2017, 185, 805-813.	5.1	15
29	Hydrothermal stability improvement of NiPt-containing γ-Al2O3 catalysts tested in aqueous phase reforming of glycerol/water mixture for H2 production. International Journal of Hydrogen Energy, 2017, 42, 23617-23630.	3.8	22
30	Thermocatalytic conversion of lignin in an ethanol/formic acid medium with NiMo catalysts: Role of the metal and acid sites. Applied Catalysis B: Environmental, 2017, 217, 353-364.	10.8	58
31	Structure-activity relationships of Ni-Cu/Al 2 O 3 catalysts for γ-valerolactone conversion to 2-methyltetrahydrofuran. Applied Catalysis B: Environmental, 2017, 210, 328-341.	10.8	54
32	The Key Role of Textural Properties of Aluminosilicates in the Acidâ€Catalysed Dehydration of Glucose into 5â€Hydroxymethylfurfural. ChemistrySelect, 2017, 2, 2444-2451.	0.7	17
33	Analysis of the effect of temperature and reaction time on yields, compositions and oil quality in catalytic and non-catalytic lignin solvolysis in a formic acid/water media using experimental design. Bioresource Technology, 2017, 234, 86-98.	4.8	26
34	Unraveling the Role of Formic Acid and the Type of Solvent in the Catalytic Conversion of Lignin: A Holistic Approach. ChemSusChem, 2017, 10, 754-766.	3.6	59
35	High-Performance Magnetic Activated Carbon from Solid Waste from Lignin Conversion Processes. 2. Their Use as NiMo Catalyst Supports for Lignin Conversion. ACS Sustainable Chemistry and Engineering, 2017, 5, 11226-11237.	3.2	19
36	Effect of Au addition on hydrogen permeation and the resistance to H2S on Pd-Ag alloy membranes. Journal of Membrane Science, 2017, 542, 329-341.	4.1	31

#	Article	IF	CITATIONS
37	Development of a combined solid and liquid wastes treatment integrated into a high purity ZnO hydrometallurgical production process from Waelz oxide. Hydrometallurgy, 2017, 173, 250-257.	1.8	9
38	Influence of the Support of Bimetallic Platinum Tungstate Catalysts on 1,3â€Propanediol Formation from Glycerol. ChemCatChem, 2017, 9, 4508-4519.	1.8	38
39	The role of tungsten oxide in the selective hydrogenolysis of glycerol to 1,3-propanediol over Pt/WOx/Al2O3. Applied Catalysis B: Environmental, 2017, 204, 260-272.	10.8	119
40	Economic assessment for the production of 1,2â€Propanediol from bioglycerol hydrogenolysis using molecular hydrogen or hydrogen donor molecules. Environmental Progress and Sustainable Energy, 2016, 35, 447-454.	1.3	8
41	Regeneration of surface acid sites via mild oxidation on dehydration catalysts. Catalysis Science and Technology, 2016, 6, 3367-3370.	2.1	0
42	Sustainable hydrogen production from bio-oil model compounds (meta-xylene) and mixtures (1-butanol, meta-xylene and furfural). Bioresource Technology, 2016, 216, 287-293.	4.8	20
43	Power-to-Gas: Storing surplus electrical energy. Study of Al 2 O 3 support modification. International Journal of Hydrogen Energy, 2016, 41, 19587-19594.	3.8	13
44	The Role of the Hydrogen Source on the Selective Production of γâ€Valerolactone and 2â€Methyltetrahydrofuran from Levulinic Acid. ChemSusChem, 2016, 9, 2488-2495.	3.6	56
45	Fluoride removal from Double Leached Waelz Oxide leach solutions as alternative feeds to Zinc Calcine leaching liquors in the electrolytic zinc production process. Hydrometallurgy, 2016, 161, 65-70.	1.8	21
46	Oneâ€Pot 2â€Methyltetrahydrofuran Production from Levulinic Acid in Green Solvents Using Niâ€Cu/Al ₂ O ₃ Catalysts. ChemSusChem, 2015, 8, 3483-3488.	3.6	81
47	Simultaneous catalytic de-polymerization and hydrodeoxygenation of lignin in water/formic acid media with Rh/Al2O3, Ru/Al2O3 and Pd/Al2O3 as bifunctional catalysts. Journal of Analytical and Applied Pyrolysis, 2015, 113, 713-722.	2.6	67
48	Hydrogen production from n-butanol over alumina and modified alumina nickel catalysts. International Journal of Hydrogen Energy, 2015, 40, 5272-5280.	3.8	42
49	Thermodynamic analysis of acetic acid steam reforming for hydrogen production. Journal of Power Sources, 2015, 279, 312-322.	4.0	58
50	New approaches to the Pt/WO /Al2O3 catalytic system behavior for the selective glycerol hydrogenolysis to 1,3-propanediol. Journal of Catalysis, 2015, 323, 65-75.	3.1	142
51	Oxidative steam reforming of methane over nickel catalysts supported on Al ₂ O ₃ –CeO ₂ –La ₂ O ₃ . Catalysis Science and Technology, 2015, 5, 1704-1715.	2.1	34
52	Process integration for hydrogen production, purification and storage using iron oxides. International Journal of Hydrogen Energy, 2014, 39, 5257-5266.	3.8	6
53	Dehydration of d-xylose to furfural using selective and hydrothermally stable arenesulfonic SBA-15 catalysts. Applied Catalysis B: Environmental, 2014, 145, 34-42.	10.8	80
54	Enhancement of phenol hydrodeoxygenation over Pd catalysts supported on mixed HY zeolite and Al2O3. An approach to O-removal from bio-oils. Fuel, 2014, 117, 1061-1073.	3.4	117

#	Article	IF	CITATIONS
55	Recent Improvement on H2 Production by Liquid Phase Reforming of Glycerol: Catalytic Properties and Performance, and Deactivation Studies. Topics in Catalysis, 2014, 57, 1066-1077.	1.3	30
56	Hybrid organosilica membranes and processes: Status and outlook. Separation and Purification Technology, 2014, 121, 2-12.	3.9	70
57	Heterogeneous acid-catalysts for the production of furan-derived compounds (furfural and) Tj ETQq1 1 0.7843	14 rgBT /O 2.2	verlock 10 Tf3
58	Deactivation study of the Pt and/or Ni-based γ-Al2O3 catalysts used in the aqueous phase reforming of glycerol for H2 production. Applied Catalysis A: General, 2014, 472, 80-91.	2.2	71
59	Aqueous-phase catalytic oxidation of furfural with H ₂ O ₂ : high yield of maleic acid by using titanium silicalite-1. RSC Advances, 2014, 4, 54960-54972.	1.7	97
60	Analysis of the Simultaneous Gas–Liquid CO2 Absorption and Liquid–Gas NH3 Desorption in a Hydrometallurgical Waelz Oxides Purification Process. International Journal of Chemical Reactor Engineering, 2014, 12, 549-562.	0.6	4
61	Dehydration of xylose and glucose to furan derivatives using bifunctional partially hydroxylated MgF ₂ catalysts and N ₂ -stripping. Catalysis Science and Technology, 2014, 4, 1357-1368.	2.1	31
62	Micro reactor hydrogen production from ethylene glycol reforming using Rh catalysts supported on CeO2 and La2O3 promoted α-Al2O3. International Journal of Hydrogen Energy, 2014, 39, 5248-5256.	3.8	19
63	Levulinic acid hydrogenolysis on Al2O3-based Ni-Cu bimetallic catalysts. Chinese Journal of Catalysis, 2014, 35, 656-662.	6.9	76
64	Glycerol acetals as diesel additives: Kinetic study of the reaction between glycerol and acetaldehyde. Fuel Processing Technology, 2013, 116, 182-188.	3.7	54
65	Acetalization reaction between glycerol and n-butyraldehyde using an acidic ion exchange resin. Kinetic modelling. Chemical Engineering Journal, 2013, 228, 300-307.	6.6	44
66	Physicochemical Study of Glycerol Hydrogenolysis Over a Ni–Cu/Al2O3 Catalyst Using Formic Acid as the Hydrogen Source. Topics in Catalysis, 2013, 56, 995-1007.	1.3	41
67	Functionalized partially hydroxylated MgF2 as catalysts for the dehydration of d-xylose to furfural. Journal of Catalysis, 2013, 305, 81-91.	3.1	68
68	Dehydration of xylose to furfural using a Lewis or Brönsted acid catalyst and N2 stripping. Chinese Journal of Catalysis, 2013, 34, 1402-1406.	6.9	33
69	Glycerol hydrogenolysis into propanediols using in situ generated hydrogen – A critical review. European Journal of Lipid Science and Technology, 2013, 115, 9-27.	1.0	135
70	PdCu membrane integration and lifetime in the production of hydrogen from methane. International Journal of Hydrogen Energy, 2013, 38, 7659-7666.	3.8	13
71	Electrowinning studies for metallic zinc production from double leached Waelz oxide. Chemical Engineering Research and Design, 2013, 91, 495-502.	2.7	16
72	Tri-reforming: A new biogas process for synthesis gas andÂhydrogen production. International Journal of Hydrogen Energy, 2013, 38, 7623-7631.	3.8	111

#	Article	IF	CITATIONS
73	Pt monometallic and bimetallic catalysts prepared by acid sol–gel method for liquid phase reforming of bioglycerol. Journal of Molecular Catalysis A, 2013, 368-369, 125-136.	4.8	36
74	Production of furfural from pentosan-rich biomass: Analysis of process parameters during simultaneous furfural stripping. Bioresource Technology, 2013, 143, 258-264.	4.8	57
75	Furfural production from xylose + glucose feedings and simultaneous N2-stripping. Green Chemistry, 2012, 14, 3132.	4.6	47
76	Active and Stable Niâ€MgO Catalyst Coated on a Metal Monolith for Methane Steam Reforming under Low Steamâ€ŧo arbon Ratios. Chemical Engineering and Technology, 2012, 35, 2195-2203.	0.9	19
77	Hydrogenolysis through catalytic transfer hydrogenation: Glycerol conversion to 1,2-propanediol. Catalysis Today, 2012, 195, 22-31.	2.2	91
78	A comparison of sol–gel and impregnated Pt or/and Ni based γ-alumina catalysts for bioglycerol aqueous phase reforming. Applied Catalysis B: Environmental, 2012, 125, 516-529.	10.8	97
79	PdCu membrane applied to hydrogen production from methane. Journal of Membrane Science, 2012, 415-416, 66-74.	4.1	17
80	Biogas steam and oxidative reforming processes for synthesis gas and hydrogen production in conventional and microreactor reaction systems. International Journal of Hydrogen Energy, 2012, 37, 13829-13842.	3.8	64
81	Bio n-Butanol Partial Oxidation to Butyraldehyde in Gas Phase on Supported Ru and Cu Catalysts. Catalysis Letters, 2012, 142, 417-426.	1.4	22
82	The conceptual design of a continuous pervaporation membrane reactor for the production of 1,1â€diethoxy butane. AICHE Journal, 2012, 58, 1862-1868.	1.8	13
83	Testing of a Niâ€Al ₂ O ₃ Catalyst for Methane Steam Reforming Using Different Reaction Systems. Chemical Engineering and Technology, 2012, 35, 720-728.	0.9	19
84	Biohydrogen production by gas phase reforming of glycerine and ethanol mixtures. International Journal of Hydrogen Energy, 2012, 37, 2028-2036.	3.8	33
85	Hydrogen production from methane and natural gas steam reforming in conventional and microreactor reaction systems. International Journal of Hydrogen Energy, 2012, 37, 7026-7033.	3.8	112
86	Zirconia supported Cu systems as catalysts for n-butanol conversion to butyraldehyde. Applied Catalysis A: General, 2012, 423-424, 185-191.	2.2	19
87	Pore size tuning of functionalized SBA-15 catalysts for the selective production of furfural from xylose. Applied Catalysis B: Environmental, 2012, 115-116, 169-178.	10.8	68
88	Bioethanol/glycerol mixture steam reforming over Pt and PtNi supported on lanthana or ceria doped alumina catalysts. International Journal of Hydrogen Energy, 2012, 37, 8298-8309.	3.8	55
89	Liquid-phase glycerol hydrogenolysis by formic acid over Ni–Cu/Al2O3 catalysts. Journal of Catalysis, 2012, 290, 79-89.	3.1	159
90	A technoâ€economic comparison of various process options for the production of 1,1â€diethoxy butane. Journal of Chemical Technology and Biotechnology, 2012, 87, 943-954.	1.6	15

#	Article	IF	CITATIONS
91	Biobutanol Dehydrogenation to Butyraldehyde over Cu, Ru and Ru–Cu Supported Catalysts. Noble Metal Addition and Different Support Effects. Catalysis Letters, 2012, 142, 50-59.	1.4	8
92	Liquid-phase glycerol hydrogenolysis to 1,2-propanediol under nitrogen pressure using 2-propanol as hydrogen source. Journal of Catalysis, 2011, 282, 237-247.	3.1	115
93	Copper deposition on Pd membranes by electroless plating. International Journal of Hydrogen Energy, 2011, 36, 13114-13121.	3.8	12
94	Furfural production from xylose using sulfonic ion-exchange resins (Amberlyst) and simultaneous stripping with nitrogen. Bioresource Technology, 2011, 102, 7478-7485.	4.8	153
95	Glycerol acetals, kinetic study of the reaction between glycerol and formaldehyde. Biomass and Bioenergy, 2011, 35, 3636-3642.	2.9	65
96	Catalytic reactive distillation process development for 1,1 diethoxy butane production from renewable sources. Bioresource Technology, 2011, 102, 1289-1297.	4.8	18
97	Studies on impurity iron removal from zinc electrolyte using MnO2–H2O2. Hydrometallurgy, 2011, 105, 370-373.	1.8	10
98	Glycerol liquid phase conversion over monometallic and bimetallic catalysts: Effect of metal, support type and reaction temperatures. Applied Catalysis B: Environmental, 2011, 106, 83-83.	10.8	27
99	Acetalization reaction of ethanol with butyraldehyde coupled with pervaporation. Semi-batch pervaporation studies and resistance of HybSi® membranes to catalyst impacts. Journal of Membrane Science, 2011, 371, 179-188.	4.1	38
100	Hydrometallurgical Processes Development for Zinc Oxide Production from Waelz Oxide. Waste and Biomass Valorization, 2010, 1, 329-337.	1.8	3
101	Hydrometallurgical process development for the production of a zinc sulphate liquor suitable for electrowinning. Minerals Engineering, 2010, 23, 511-517.	1.8	25
102	Synergy effect in the HDO of phenol over Ni–W catalysts supported on active carbon: Effect of tungsten precursors. Applied Catalysis B: Environmental, 2010, 101, 1-12.	10.8	180
103	Glycerol steam reforming over Ni catalysts supported on ceria and ceria-promoted alumina. International Journal of Hydrogen Energy, 2010, 35, 11622-11633.	3.8	184
104	Water effect in hydrogen production from methane. International Journal of Hydrogen Energy, 2010, 35, 11525-11532.	3.8	15
105	Hydrogenolysis of glycerol to propanediols over a Pt/ASA catalyst: The role of acid and metal sites on product selectivity and the reaction mechanism. Applied Catalysis B: Environmental, 2010, 97, 248-256.	10.8	198
106	Glycerol conversion into H2 by steam reforming over Ni and PtNi catalysts supported on MgO modified Î ³ -Al2O3. Studies in Surface Science and Catalysis, 2010, 175, 449-452.	1.5	9
107	Bioenergy II: The Development of a Reactive Distillation Process for the Production of 1,1 Diethoxy Butane from Bioalcohol: Kinetic Study and Simulation Model. International Journal of Chemical Reactor Engineering, 2010, 8, .	0.6	6
108	Butyraldehyde production by butanol oxidation over Ru and Cu catalysts supported on ZrO2, TiO2 and CeO2. Studies in Surface Science and Catalysis, 2010, , 453-456.	1.5	7

PEDRO LUIS ARIAS

#	Article	IF	CITATIONS
109	Kinetics and selectivity of methyl-ethyl-ketone combustion in air over alumina-supported PdOx–MnOx catalysts. Journal of Catalysis, 2009, 261, 50-59.	3.1	45
110	Reforming of methane over noble metal catalysts: Catalyst deactivation induced by thiophene. Catalysis Today, 2009, 143, 9-16.	2.2	19
111	Influence of La2O3 modified support and Ni and Pt active phases on glycerol steam reforming to produce hydrogen. Catalysis Communications, 2009, 10, 1275-1278.	1.6	125
112	Hydrogen Production from Glycerol Over Nickel Catalysts Supported on Al2O3 Modified by Mg, Zr, Ce or La. Topics in Catalysis, 2008, 49, 46-58.	1.3	224
113	Palladium-manganese catalysts supported on monolith systems for methane combustion. Applied Catalysis B: Environmental, 2008, 79, 122-131.	10.8	30
114	Effect of redox additives over Ni/Al2O3 catalysts on syngas production via methane catalytic partial oxidation. Fuel, 2008, 87, 3223-3231.	3.4	31
115	Synergistic effect of Pd in methane combustion PdMnO /Al2O3 catalysts. Catalysis Communications, 2007, 8, 1287-1292.	1.6	40
116	Reactor modeling to simulate catalytic partial oxidation and steam reforming of methane. Comparison of temperature profiles and strategies for hot spot minimization. International Journal of Hydrogen Energy, 2007, 32, 1421-1428.	3.8	54
117	Nickel/alumina catalysts modified by basic oxides for the production of synthesis gas by methane partial oxidation. Catalysis Today, 2006, 116, 304-312.	2.2	44
118	Partial oxidation of methane to syngas over Ni/MgO and Ni/La2O3 catalysts. Applied Catalysis A: General, 2005, 289, 214-223.	2.2	108
119	Influence of feed composition on the activity of Mn and PdMn/Al2O3 catalysts for combustion of formaldehyde/methanol. Applied Catalysis B: Environmental, 2005, 57, 191-199.	10.8	101
120	Formaldehyde/methanol combustion on alumina-supported manganese-palladium oxide catalyst. Applied Catalysis B: Environmental, 2004, 51, 83-91.	10.8	128
121	Modification of the Pd/SiO2–Al2O3 catalyst's thioresistance by the addition of a second metal (Pt, Ru,) Tj	ETQg1 1 C).784314 rg <mark>8</mark> 24
122	Support Effect in Supported Ni Catalysts on Their Performance for Methane Partial Oxidation. Catalysis Letters, 2003, 87, 211-218.	1.4	66
123	Hydrodesulfurization and hydrogenation of model compounds on silica–alumina supported bimetallic systemsâ~†. Fuel, 2003, 82, 501-509.	3.4	45
124	Aromatics hydrogenation on silica–alumina supported palladium–nickel catalysts. Applied Catalysis A: General, 2003, 242, 17-30.	2.2	60
125	Evaluation of silica-alumina-supported nickel catalysts in dibenzothiophene hydrodesulphurisation. Applied Catalysis A: General, 2003, 248, 211-225.	2.2	29
126	Alumina-supported manganese- and manganese–palladium oxide catalysts for VOCs combustion. Catalysis Communications, 2003, 4, 223-228.	1.6	126

#	Article	IF	CITATIONS
127	Simulation model to optimize distillation processes. Chemical Engineering Communications, 2002, 189, 448-470.	1.5	1
128	Methyl-naphthalene hydrogenation on Pt/HY–Al2O3 catalysts. An approach to hydrogenation of polyaromatic hydrocarbon mixtures. Fuel Processing Technology, 2000, 64, 117-133.	3.7	9
129	Dibenzothiophene hydrodesulfurization on HY-zeolite-supported transition metal sulfide catalysts. Fuel Processing Technology, 1999, 61, 73-88.	3.7	39
130	Surface properties and hydrocracking activity of NiMo zeolite catalysts. Applied Catalysis A: General, 1998, 169, 37-53.	2.2	25
131	Liquefaction behaviour of a Spanish subbituminous A coal under different conditions of hydrogen availability. Fuel Processing Technology, 1998, 58, 17-24.	3.7	12
132	Hydrocracking activity of NiMo-USY zeolite hydrotreating catalysts. Studies in Surface Science and Catalysis, 1997, 106, 567-572.	1.5	2
133	Hydrodesulfurization over PdMo/HY zeolite catalysts. Fuel, 1997, 76, 61-71.	3.4	17
134	The effect of sulfidation on the Ni distribution in Ni/USY zeolites. Zeolites, 1997, 18, 250-259.	0.9	15
135	Deep hydrodesulfurization of DBT and diesel fuel on supported Pt and Ir catalysts. Applied Catalysis A: General, 1996, 137, 269-286.	2.2	50
136	Effect of fluorine on hydrodenitrogenation activity of doubly promoted (Zn + Co) molybdena-alumina catalysts. Fuel, 1995, 74, 285-290.	3.4	6
137	Advanced catalysts for coal-derived liquids hydrotreating via acidic supports. Coal Science and Technology, 1995, 24, 1287-1290.	0.0	0
138	Heterogeneously catalyzed coal hydroliquefaction: Screening of catalysts and characterization. International Journal of Energy Research, 1994, 18, 145-166.	2.2	5
139	Mo-USY zeolites for hydrodesulphurization. Applied Catalysis A: General, 1993, 99, 55-70.	2.2	29
140	COMBINED EFFECT OF FLUORINE AND ZINC INCORPORATION ON THE HDS ACTIVITY OF Co-Mo CATALYSTS. Petroleum Science and Technology, 1992, 10, 215-221.	0.2	1
141	Effect of fluorine on hydrodesulfurization and hydrogenation activity of doubly promoted (zinc +) Tj ETQq1 1 0. 2365-2371.	784314 rgl 1.8	3T /Overlock 13
142	VARIATION OF TEMPERATURE EFFECT WITH HYDROGEN SUPPLY IN NON-CATALYTIC COAL LIQUEFACTION. Petroleum Science and Technology, 1991, 9, 355-367.	0.2	1
143	Hydrodesulfurizationâ€Hydrogenation of Niâ€Containing Ultrastable HY Zeolites. Bulletin Des Sociétés Chimiques Belges, 1991, 100, 915-921.	0.0	10
144	Relationship between liquefaction yields and characteristics of different rank coals. Fuel Processing Technology, 1990, 24, 127-133.	3.7	13

#	Article	IF	CITATIONS
145	Industrial nitrogen oxides absorption simulation. Computers and Chemical Engineering, 1989, 13, 985-1002.	2.0	9
146	Chemical and petrographic characterization and liquefaction yields of Spanish coals. Fuel Processing Technology, 1987, 15, 293-305.	3.7	5
147	2,5 DMF Production from Biomass Using Heterogenous Catalysts. , 0, , .		0