Eric W Hewitt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5381527/publications.pdf Version: 2024-02-01

FRIC WHEWITT

#	Article	IF	CITATIONS
1	The role of macromolecular crowding in single-entity electrochemistry: Friend or foe?. Current Opinion in Electrochemistry, 2021, 25, 100654.	2.5	3
2	Modulation of β-Amyloid Fibril Formation in Alzheimer's Disease by Microglia and Infection. Frontiers in Molecular Neuroscience, 2020, 13, 609073.	1.4	35
3	Macromolecular Crowding Enhances the Detection of DNA and Proteins by a Solid-State Nanopore. Nano Letters, 2020, 20, 5553-5561.	4.5	71
4	Methods for protein delivery into cells: from current approaches to future perspectives. Biochemical Society Transactions, 2020, 48, 357-365.	1.6	17
5	Design and synthesis of cysteine-specific labels for photo-crosslinking studies. RSC Advances, 2019, 9, 7610-7614.	1.7	8
6	Structural mapping of oligomeric intermediates in an amyloid assembly pathway. ELife, 2019, 8, .	2.8	44
7	A new era for understanding amyloid structures and disease. Nature Reviews Molecular Cell Biology, 2018, 19, 755-773.	16.1	654
8	Why are Functional Amyloids Non-Toxic in Humans?. Biomolecules, 2017, 7, 71.	1.8	68
9	Cellular proteostasis: degradation of misfolded proteins by lysosomes. Essays in Biochemistry, 2016, 60, 173-180.	2.1	122
10	Comparison of the aggregation of homologous β2-microglobulin variants reveals protein solubility as a key determinant of amyloid formation. Journal of Molecular Biology, 2016, 428, 631-643.	2.0	20
11	pH-induced molecular shedding drives the formation of amyloid fibril-derived oligomers. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5691-5696.	3.3	95
12	Amyloid Fibres: Inert End-Stage Aggregates or Key Players in Disease?. Trends in Biochemical Sciences, 2015, 40, 719-727.	3.7	100
13	Analysis of Familial Hemophagocytic Lymphohistiocytosis Type 4 (FHL-4) Mutant Proteins Reveals that S-Acylation Is Required for the Function of Syntaxin 11 in Natural Killer Cells. PLoS ONE, 2014, 9, e98900.	1.1	20
14	β2-Microglobulin Amyloid Fibril-Induced Membrane Disruption Is Enhanced by Endosomal Lipids and Acidic pH. PLoS ONE, 2014, 9, e104492.	1.1	30
15	β2-Microglobulin Amyloid Fibrils Are Nanoparticles That Disrupt Lysosomal Membrane Protein Trafficking and Inhibit Protein Degradation by Lysosomes. Journal of Biological Chemistry, 2014, 289, 35781-35794.	1.6	31
16	Aggregation Modulators Interfere with Membrane Interactions ofÂβ2-Microglobulin Fibrils. Biophysical Journal, 2013, 105, 745-755.	0.2	27
17	Direct three-dimensional visualization of membrane disruption by amyloid fibrils. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20455-20460.	3.3	162
18	Characterization of the Response of Primary Cells Relevant to Dialysis-Related Amyloidosis to β2-Microglobulin Monomer and Fibrils. PLoS ONE, 2011, 6, e27353.	1.1	24

Eric W Hewitt

#	Article	IF	CITATIONS
19	Fibril fragmentation in amyloid assembly and cytotoxicity. Prion, 2010, 4, 20-25.	0.9	106
20	Dependence of the localization and function of the human cytomegalovirus protein US6 on the transporter associated with antigen processing. Journal of General Virology, 2009, 90, 2234-2238.	1.3	2
21	Natural killer cell cytotoxicity: how do they pull the trigger?. Immunology, 2009, 128, 7-15.	2.0	214
22	Fibril Fragmentation Enhances Amyloid Cytotoxicity. Journal of Biological Chemistry, 2009, 284, 34272-34282.	1.6	326
23	Structural and Functional Dissection of the Human Cytomegalovirus Immune Evasion Protein US6. Journal of Virology, 2008, 82, 3271-3282.	1.5	26
24	Investigation into the Role of Macrophages in the Formation and Degradation of β2-Microglobulin Amyloid Fibrils. Journal of Biological Chemistry, 2007, 282, 29691-29700.	1.6	30
25	Organelle Proteomics. Molecular and Cellular Proteomics, 2007, 6, 767-780.	2.5	73
26	A Systematic Study of the Effect of Physiological Factors on β2-Microglobulin Amyloid Formation at Neutral pH. Biochemistry, 2006, 45, 2311-2321.	1.2	120
27	Competing Pathways Determine Fibril Morphology in the Self-assembly of β2-Microglobulin into Amyloid. Journal of Molecular Biology, 2005, 351, 850-864.	2.0	320
28	Virus subversion of protective immunity. Current Allergy and Asthma Reports, 2004, 4, 365-370.	2.4	8
29	The ABC-transporter signature motif is required for peptide translocation but not peptide binding by TAP. European Journal of Immunology, 2003, 33, 422-427.	1.6	18
30	The MHC class I antigen presentation pathway: strategies for viral immune evasion. Immunology, 2003, 110, 163-169.	2.0	349
31	Powering the peptide pump: TAP crosstalk with energetic nucleotides. Trends in Biochemical Sciences, 2002, 27, 454-461.	3.7	50
32	Ubiquitylation of MHC class I by the K3 viral protein signals internalization and TSG101-dependent degradation. EMBO Journal, 2002, 21, 2418-2429.	3.5	177