Angelo Basile

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5381252/publications.pdf Version: 2024-02-01

ANCELO RASILE

#	Article	IF	CITATIONS
1	The pesticide fate tool for groundwater vulnerability assessment within the geospatial decision support system LandSupport. Science of the Total Environment, 2022, 807, 150793.	3.9	14
2	Zero-Tillage Effects on Durum Wheat Productivity and Soil-Related Variables in Future Climate Scenarios: A Modeling Analysis. Agronomy, 2022, 12, 331.	1.3	7
3	Assessing the dynamics of soil salinity with time-lapse inversion of electromagnetic data guided by hydrological modelling. Hydrology and Earth System Sciences, 2021, 25, 1509-1527.	1.9	13
4	A new transfer function model for the estimation of non-point-source solute travel times. Journal of Hydrology, 2021, 598, 126157.	2.3	2
5	Exploring the effect of varying soil organic matter contents on current and future moisture supply capacities of six Italian soils. Geoderma, 2020, 361, 114079.	2.3	18
6	A geospatial decision support system to assist olive growing at the landscape scale. Computers and Electronics in Agriculture, 2020, 168, 105143.	3.7	20
7	A modelling approach to discriminate contributions of soil hydrological properties and slope gradient to water stress in Mediterranean vineyards. Agricultural Water Management, 2020, 241, 106338.	2.4	8
8	Managing Soils for Recovering from the COVID-19 Pandemic. Soil Systems, 2020, 4, 46.	1.0	51
9	Soil Monitor: an internet platform to challenge soil sealing in Italy. Land Degradation and Development, 2020, 31, 2883-2900.	1.8	9
10	Targeting the soil quality and soil health concepts when aiming for the United Nations Sustainable Development Goals and the EU Green Deal. Soil, 2020, 6, 453-466.	2.2	43
11	Adaptability of global olive cultivars to water availability under future Mediterranean climate. Mitigation and Adaptation Strategies for Global Change, 2019, 24, 435-466.	1.0	12
12	Assessing the Potential of Cereal Production Systems to Adapt to Contrasting Weather Conditions in the Mediterranean Region. Agronomy, 2019, 9, 393.	1.3	16
13	Special Issue "Soil Hydrology in Agriculture― Water (Switzerland), 2019, 11, 1430.	1.2	0
14	A Geospatial Decision Support System Tool for Supporting Integrated Forest Knowledge at the Landscape Scale. Forests, 2019, 10, 690.	0.9	15
15	LCIS DSS—An irrigation supporting system for water use efficiency improvement in precision agriculture: A maize case study. Agricultural Systems, 2019, 176, 102646.	3.2	67
16	Identifying Optimal Irrigation Water Needs at District Scale by Using A Physically Based Agro-Hydrological Model. Water (Switzerland), 2019, 11, 841.	1.2	14
17	How does PTF Interpret Soil Heterogeneity? A Stochastic Approach Applied to a Case Study on Maize in Northern Italy. Water (Switzerland), 2019, 11, 275.	1.2	10
18	Coupling geophysical measurements and hydrological modeling for the determination of longitudinal dispersivity. , 2019, , .		2

ANGELO BASILE

#	Article	IF	CITATIONS
19	Andic soils and flowâ€like landslides: Cause–effect evidence from Italy. Land Degradation and Development, 2019, 30, 128-140.	1.8	8
20	The hidden ecological resource of andic soils in mountain ecosystems: evidence from Italy. Solid Earth, 2018, 9, 63-74.	1.2	10
21	Evaluation of the effects of future climate change on grape quality through a physically based model application: a case study for the Aglianico grapevine in Campania region, Italy. Agricultural Systems, 2017, 152, 100-109.	3.2	37
22	A geospatial decision support system for supporting quality viticulture at the landscape scale. Computers and Electronics in Agriculture, 2017, 140, 88-102.	3.7	22
23	Adaptability to future climate of irrigated crops: The interplay of water management and cultivars responses. A case study on tomato. Biosystems Engineering, 2017, 157, 45-62.	1.9	9
24	Soil Sealing: Quantifying Impacts on Soil Functions by a Geospatial Decision Support System. Land Degradation and Development, 2017, 28, 2513-2526.	1.8	13
25	The role of soils in the analysis of potential agricultural production: A case study in Lebanon. Agricultural Systems, 2017, 156, 67-75.	3.2	14
26	Spatial analysis of clay content in soils using neurocomputing and pedological support: a case study of Valle Telesina (South Italy). Environmental Earth Sciences, 2016, 75, 1.	1.3	0
27	Assessing the Potential of Intra-specific Biodiversity towards Adaptation of Irrigated and Rain-fed Italian Production Systems to Future Climate. Procedia Environmental Sciences, 2015, 29, 264-265.	1.3	Ο
28	Functional homogeneous zones (fHZs) in viticultural zoning procedure: an Italian case study on Aglianico vine. Soil, 2015, 1, 427-441.	2.2	38
29	Volcanic soils and landslides: a case study of the island of Ischia (southern Italy) and its relationship with other Campania events. Solid Earth, 2015, 6, 783-797.	1.2	20
30	A Web-based spatial decision supporting system for land management and soil conservation. Solid Earth, 2015, 6, 903-928.	1.2	50
31	Climate Change Effects on the Suitability of an Agricultural Area to Maize Cultivation. Advances in Agronomy, 2015, 133, 33-69.	2.4	30
32	Simulated Preferential Water Flow and Solute Transport in Shrinking Soils. Vadose Zone Journal, 2015, 14, 1-22.	1.3	28
33	Climate change, effective water use for irrigation and adaptability of maize: A case study in southern Italy. Biosystems Engineering, 2014, 128, 82-99.	1.9	26
34	Comparison of hydraulic behaviour of unvegetated and vegetationâ€stabilized sand dunes in arid desert ecosystems. Ecohydrology, 2013, 6, 264-274.	1.1	18
35	Dielectric properties of a tilled sandy volcanic-vesuvian soil with moderate andic features. Soil and Tillage Research, 2013, 133, 93-100.	2.6	15
36	Measuring and modeling water content in stony soils. Soil and Tillage Research, 2013, 128, 9-22.	2.6	59

#	Article	IF	CITATIONS
37	A Stochastic Texture-based Approach for Evaluating Solute Travel Times to Groundwater at Regional Scale by Coupling GIS and Transfer Function. Procedia Environmental Sciences, 2013, 19, 711-722.	1.3	4
38	Future Soil Issues. World Soils Book Series, 2013, , 303-348.	0.1	9
39	Adaptation of Irrigated and Rainfed Agriculture to Climate Change: The Vulnerability of Production Systems and the Potential of Intraspecific Biodiversity (Case Studies in Italy). , 2013, , 1-35.		1
40	Dualâ€permeability model for flow in shrinking soil with dominant horizontal deformation. Water Resources Research, 2012, 48, .	1.7	51
41	Complementary techniques to assess physical properties of a fine soil irrigated with saline water. Environmental Earth Sciences, 2012, 66, 1797-1807.	1.3	43
42	Nitrate leaching under maize cropping systems in Po Valley (Italy). Agriculture, Ecosystems and Environment, 2012, 147, 57-65.	2.5	135
43	A physically oriented approach to analysis and mapping of terroirs. Geoderma, 2011, 167-168, 103-117.	2.3	50
44	Potential and limitations of using soil mapping information to understand landscape hydrology. Hydrology and Earth System Sciences, 2011, 15, 3895-3933.	1.9	26
45	Use of Physically Based Models to Evaluate USDA Soil Moisture Classes. Soil Science Society of America Journal, 2011, 75, 181-191.	1.2	12
46	Hydrological behaviour of microbiotic crusts on sand dunes: Example from NW China comparing infiltration in crusted and crust-removed soil. Soil and Tillage Research, 2011, 117, 34-43.	2.6	35
47	Solute transport scales in an unsaturated stony soil. Advances in Water Resources, 2011, 34, 747-759.	1.7	27
48	High-resolution space–time rainfall analysis using integrated ANN inference systems. Journal of Hydrology, 2010, 387, 328-342.	2.3	62
49	SWAP, CropSyst and MACRO comparison in two contrasting soils cropped with maize in Northern Italy. Agricultural Water Management, 2010, 97, 1051-1062.	2.4	71
50	Monte Carlo analysis of field water flow comparing uni- and bimodal effective hydraulic parameters for structured soil. Journal of Contaminant Hydrology, 2009, 104, 153-165.	1.6	43
51	Darcian preferential water flow and solute transport through bimodal porous systems: Experiments and modelling. Journal of Contaminant Hydrology, 2009, 104, 74-83.	1.6	46
52	Comparative Land Evaluation approaches: An itinerary from FAO framework to simulation modelling. Geoderma, 2009, 150, 367-378.	2.3	38
53	Scaling Approach to Deduce Field Unsaturated Hydraulic Properties and Behavior from Laboratory Measurements on Small Cores. Vadose Zone Journal, 2006, 5, 1005-1016.	1.3	42
54	Hysteresis in soil water characteristics as a key to interpreting comparisons of laboratory and field measured hydraulic properties. Water Resources Research, 2003, 39, .	1.7	95

ANGELO BASILE

#	Article	IF	CITATIONS
55	Soil hydraulic behaviour of a selected benchmark soil involved in the landslide of Sarno 1998. Geoderma, 2003, 117, 331-346.	2.3	61
56	Experimental corrections of simplified methods for predicting water retention curves in clay-loamy soils from particle-size determination. Soil and Tillage Research, 1997, 10, 261-272.	0.4	49
57	Physico-empirical approach for mapping soil hydraulic behaviour. Hydrology and Earth System Sciences, 1997, 1, 915-923.	1.9	5
58	Temporal stability of spatial patterns of soil water storage in a cultivated Vesuvian soil. Geoderma, 1994, 62, 299-310.	2.3	60
59	A Review of Approaches for Measuring Soil Hydraulic Properties and Assessing the Impacts of Spatial Dependence on the Results. , 0, , .		2