List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5381129/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Salt to conserve: a review on the ecology and preservation of hypersaline ecosystems. Biological Reviews, 2021, 96, 2828-2850.	4.7	47
2	Current Invasions of Asian Cyclopid Species (Copepoda: Cyclopidae) in Crimea, with Taxonomical and Zoogeographical Remarks on the Hypersaline and Freshwater Fauna. Annales Zoologici, 2014, 64, 109-130.	0.1	42
3	Chironomidae larvae in hypersaline waters of the Crimea: diversity, distribution, abundance and production. , 2017, 84, 61-72.		41
4	Title is missing!. Turkish Journal of Fisheries and Aquatic Sciences, 2013, 13, .	0.4	36
5	Do copepods inhabit hypersaline waters worldwide? A short review and discussion. Chinese Journal of Oceanology and Limnology, 2015, 33, 1354-1361.	0.7	31
6	The political decision caused the drastic ecosystem shift of the Sivash Bay (the Sea of Azov). Quaternary International, 2018, 475, 4-10.	0.7	31
7	How can saline and hypersaline lakes contribute to aquaculture development? A review. Journal of Oceanology and Limnology, 2018, 36, 2002-2009.	0.6	30
8	Intentional introduction of Artemia sinica (Anostraca) in the high-altitude Tibetan lake Dangxiong Co: the new population and consequences for the environment and for humans. Chinese Journal of Oceanology and Limnology, 2015, 33, 1451-1460.	0.7	27
9	Does salinity change determine zooplankton variability in the saline Qarun Lake (Egypt)?. Chinese Journal of Oceanology and Limnology, 2015, 33, 1368-1377.	0.7	26
10	Suppression of <i>Artemia</i> spp. (Crustacea, Anostraca) populations by predators in the Crimean hypersaline lakes: A review of the evidence. International Review of Hydrobiology, 2019, 104, 5-13.	0.5	25
11	Extreme hydrological events destabilize aquatic ecosystems and open doors for alien species. Quaternary International, 2018, 475, 11-15.	0.7	24
12	Potentiometric titration of polyacrylic acid, polymethacrylic acid and poly-l-glutamic acid. Polymer Science USSR, 1965, 7, 1008-1018.	0.2	23
13	The longâ€ŧerm changes in plankton composition: Is Bay Sivash transforming back into one of the world's largest habitats of <i>Artemia</i> sp. (Crustacea, Anostraca)?. Aquaculture Research, 2020, 51, 341-350.	0.9	21
14	Long-term changes of physicochemical parameters and benthos in Lake Qarun (Egypt): Can we make a correct forecast of ecosystem future?. Knowledge and Management of Aquatic Ecosystems, 2016, , 18.	0.5	19
15	Cladophora mats in a Crimean hypersaline lake: structure, dynamics, and inhabiting animals. Journal of Oceanology and Limnology, 2018, 36, 1930-1940.	0.6	19
16	The swimming behavior of Artemia (Anostraca): new experimental and observational data. Zoology, 2014, 117, 415-421.	0.6	17
17	Dormant stages of crustaceans as a mechanism of propagation in the extreme and unpredictable environment in the Crimean hypersaline lakes. Chinese Journal of Oceanology and Limnology, 2015, 33, 1362-1367.	0.7	17
18	<i>Cladophora</i> spp. (Chlorophyta) modulate environment and create a habitat for microalgae in hypersaline waters. European Journal of Phycology, 2021, 56, 231-243.	0.9	16

#	Article	IF	CITATIONS
19	Tintinnina (Ciliophora) and Foraminifera in plankton of hypersaline Lagoon Bardawil (Egypt): spatial and temporal variability. Turkish Journal of Zoology, 2018, 42, 218-229.	0.4	15
20	Macrostructure of benthos along a salinity gradient: The case of Sivash Bay (the Sea of Azov), the largest hypersaline lagoon worldwide. Journal of Sea Research, 2019, 154, 101811.	0.6	15
21	Long-term changes (1979-2015) in the nematode fauna in Sivash Bay (Sea of Azov), Russia, worldwide the largest hypersaline lagoon, during salinity transformations. Nematology, 2019, 21, 337-347.	0.2	15
22	History of research on biodiversity in Crimean hypersaline waters. Arid Ecosystems, 2017, 7, 52-58.	0.2	14
23	Does Salinity Affect the Distribution of the Artificial Radionuclides 90Sr and 137Cs in Water of the Saline Lakes? A Case of the Crimean Peninsula. Water (Switzerland), 2020, 12, 349.	1.2	14
24	Do separated taxa react differently to a long-term salinity increase? The meiobenthos changes in Bay Sivash, largest hypersaline lagoon worldwide. Knowledge and Management of Aquatic Ecosystems, 2019, , 36.	0.5	12
25	Structure and Trophic Relations in Hypersaline Environments. Biology Bulletin Reviews, 2020, 10, 48-56.	0.3	12
26	<i>Gammarus aequicauda</i> and <i>Moina salina</i> in the Crimean saline waters: New experimental and field data on their trophic relation. Aquaculture Research, 2020, 51, 3091-3099.	0.9	12
27	Anthropogenic Transformation of Kyzyl-Yar Lake in Crimea: Multiyear Research Findings. Arid Ecosystems, 2018, 8, 299-306.	0.2	11
28	Human-Induced Sharp Salinity Changes in the World's Largest Hypersaline Lagoon Bay Sivash (Crimea) and Their Effects on the Ecosystem. Water (Switzerland), 2022, 14, 403.	1.2	11
29	Copepoda in the shallow hypersaline Bardawil coastal lake (Egypt): Are there long-term changes in composition and abundance?. Oceanological and Hydrobiological Studies, 2018, 47, 219-229.	0.3	10
30	Is biomass of filamentous green algae <i>Cladophora</i> spp. (Chlorophyta, Ulvophyceae) an unlimited cheap and valuable resource for medicine and pharmacology? A review. Reviews in Aquaculture, 2020, 12, 2493-2510.	4.6	10
31	Transformation of Gulf Sivash (the Sea of Azov) in Conditions of Growing Salinity: Changes of Meiobenthos and Other Ecosystem Components (2013-2015). Journal of Siberian Federal University - Biology, 2016, 10, 452-466.	0.2	10
32	Ecosystems of artificial saline lakes. A case of Lake Magic in Wadi El-Rayan depression (Egypt). Knowledge and Management of Aquatic Ecosystems, 2020, , 31.	0.5	9
33	Natural radionuclides in bottom sediments of the saline lakes. What factors determine their concentration?. Environmental Earth Sciences, 2020, 79, 1.	1.3	9
34	Current invasions of East Asian cyclopoids (Copepoda, Cyclopoida)in Europe: new records from eastern Ukraine. Turkish Journal of Zoology, 2016, 40, 282-285.	0.4	8
35	Can Gammarus aequicauda (Amphipoda) suppress a population of Baeotendipes noctivagus (Chironomidae) in a hypersaline lake? A case of Lake Moynaki (Crimea). Aquaculture Research, 2021, 52, 1705-1714.	0.9	8
36	Microphytobenthos in the Hypersaline Water Bodies, the Case of Bay Sivash (Crimea): Is Salinity the Main Determinant of Species Composition?. Water (Switzerland), 2021, 13, 1542.	1.2	8

#	Article	IF	CITATIONS
37	Trace Elements in the Bottom Sediments of the Crimean Saline Lakes. Is It Possible to Explain Their Concentration Variability?. Water (Switzerland), 2020, 12, 2364.	1.2	7
38	Mesochra rostrata Gurney, 1927 (Copepoda, Harpacticoida) in Sivash Bay (Sea of Azov): Is it a new alien species or a relict of Tethys?. Russian Journal of Biological Invasions, 2017, 8, 244-250.	0.2	6
39	OSTRACODS IN THE PLANKTON OF THE SIVASH BAY (THE SEA OF AZOV) DURING ITS TRANSFORMATION FROM BRACKISH TO HYPERSALINE STATE. Ecologica Montenegrina, 0, 14, 102-108.	0.5	6
40	Effect of Salinity on Chironomid Larvae (Diptera, Chironomidae) in Hypersaline Lakes of Crimea. Biology Bulletin, 2018, 45, 1211-1218.	0.1	6
41	First data on predation of Eucypris mareotica (Crustacea, Ostracoda) in hypersaline waters. Food Webs, 2018, 16, e00090.	0.5	6
42	Distribution and Population Dynamics of the Highly Halotolerant Species Eucypris mareotica (Fischer,) Tj ETQq0 C	0.rgBT /(Dverlock 10 T
43	The role of salinity as an environmental filtering factor in the determination of the Diptera taxonomic composition in the Crimean waters. Knowledge and Management of Aquatic Ecosystems, 2019, , 3.	0.5	6
44	Behavior of <i>Gammarus aequicauda</i> (Crustacea, Amphipoda) during predation on <i>Artemia</i> (Crustacea, Anostraca): New experimental results. International Review of Hydrobiology, 2020, 105, 143-150.	0.5	6
45	Size polymorphism and fluctuating asymmetry of Artemia (Branchiopoda: Anostraca) populations from the Crimea. Journal of Siberian Federal University - Biology, 2017, 10, 114-126.	0.2	6
46	Mercury in the world's largest hypersaline lagoon Bay Sivash, the Sea of Azov. Environmental Science and Pollution Research, 2021, 28, 28704-28712.	2.7	5
47	Does salinity affect body proportions and "size/mass―ratios of highly halotolerant <i>Baeotendipes noctivagus</i> larvae (Diptera, Chironomidae)?. Oceanological and Hydrobiological Studies, 2019, 48, 305-315.	0.3	4
48	Appearance of a New Species of Cladocera (Anomopoda, Chydoridae, Bosminidae) in the Hypersaline Moynaki Lake, Crimea. Biology Bulletin, 2021, 48, 934-937.	0.1	4
49	Spatio-temporal variability of zooplankton and zoobenthos as the elements of integrated zoocenosis in a marine lake (Crimea, Black Sea): What is a general pattern?. Journal of Sea Research, 2022, 185, 102231.	0.6	4
50	The intramolecular mobility of poly-n-alkylmethacrylates. Polymer Science USSR, 1975, 17, 675-682.	0.2	3
51	The behavior of <i>Gammarus aequicauda</i> (crustacea, amphipoda) during predation on chironomid larvae: Sex differences and changes in precopulatory mateâ€guarding state. Journal of Experimental Zoology Part A: Ecological and Integrative Physiology, 2021, 335, 572-582.	0.9	3
52	Spatial and temporal variability of microphytobenthos in a marine hypersaline lake (Crimea): Are there some general patterns?. Journal of Sea Research, 2021, 177, 102121.	0.6	3
53	First Record of Ranatra linearis (Hemiptera, Nepidae) in Hypersaline Water Bodies of the Crimea. Hydrobiological Journal, 2016, 52, 49-53.	0.2	3
54	Cyclopoida in Hypersaline Waters of the Crimea and the World: Diversity, the Impact of Environmental Factors, Ecological Role. Journal of Siberian Federal University - Biology, 2016, 10, 398-408.	0.2	3

#	Article	IF	CITATIONS
55	MICROALGAE IN THE DIET OF EUCYPRIS MAREOTICA (CRUSTACEA, OSTRACODA) IN THE HYPERSALINE LAKE CHERSONESSKOYE (CRIMEA). Ecologica Montenegrina, 0, 17, 100-104.	0.5	3

56 Factors determining the average body size of geographically separated Arctodiaptomus salinus (Daday,) Tj ETQq0 0.0 rgBT /Qverlock 10

57	Intramolecular mobility and flexibility of polyamidoacid molecules in solution. Polymer Science USSR,	0.2	2
	1975, 17, 5220-5229.		
58	Integral Indicators of Variability of Arctodiaptomus salinus (Daday, 1885) (Copepoda, Diaptomidae) and Their Possible Use in Assessing the Population State. Inland Water Biology, 2018, 11, 456-464.	0.2	2
59	The Effect of Gamma Radiation on Parthenogenetic Artemia (Branchiopoda, Anostraca) Cysts: Nauplius Hatching and Postnauplial Survival under Varying Salinity. Biology Bulletin, 2019, 46, 1390-1396.	0.1	2
60	Gamma Radiation Effect of Partnogenetic Artemia (Branchiopoda, Anostraca) Cysts on Nauplius Hatching and Postnauplius Survival under Different Salinity. Povolzhskii Ekologicheskii Zhurnal, 2018, 17, 418-432.	0.0	2
61	Brief review of phototrophs in the Crimean hypersaline lakesand lagoons: diversity, ecological role, the possibility of using. Marine Biological Journal, 2017, 2, 80-85.	0.3	2
62	Morphometric variability of Arctodiaptomus salinus (Copepoda) in the Mediterranean-Black Sea region. Zoological Research, 2015, 36, 328-36.	0.6	2
63	Feeding behavior of <i>Gammarus aequicauda</i> in the presence of two prey species of <i>Artemia</i> sp. and <i>Baeotendipes noctivagus</i> . Journal of Experimental Zoology Part A: Ecological and Integrative Physiology, 2022, 337, 768-775.	0.9	2
64	Second records of the endangered species Artemia urmiana (Anostraca) in the Crimea habitat. Marine Biological Journal, 2016, 1, 75.	0.3	1
65	Editorial: the Scientific Сonference "Biodiversity and Productivity of Aquatic Ecosystemsâ€; Dedicated to the 100th Anniversary of Vladimir Nikolaevich Greze (1915–1988). Part 2. Journal of Siberian Federal University - Biology, 2017, 10, 5-8.	0.2	0