Sreyam Sinha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5380943/publications.pdf

Version: 2024-02-01

30	723	1684188	2053705
papers	citations	h-index	g-index
30	30	30	289
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A New Design Approach to Mitigating the Effect of Parasitics in Capacitive Wireless Power Transfer Systems for Electric Vehicle Charging. IEEE Transactions on Transportation Electrification, 2019, 5, 1040-1059.	7.8	79
2	High-performance large air-gap capacitive wireless power transfer system for electric vehicle charging. , $2017, \dots$		53
3	High-power-transfer-density capacitive wireless power transfer system for electric vehicle charging. , 2017, , .		52
4	High-Performance Multi-MHz Capacitive Wireless Power Transfer System for EV Charging Utilizing Interleaved-Foil Coupled Inductors. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2022, 10, 35-51.	5.4	48
5	Design of efficient matching networks for capacitive wireless power transfer systems. , 2016, , .		44
6	High-Performance 13.56 -MHz Large Air-Gap Capacitive Wireless Power Transfer System for Electric Vehicle Charging. , 2018 , , .		43
7	Improved Design Optimization for High-Efficiency Matching Networks. IEEE Transactions on Power Electronics, 2018, 33, 37-50.	7.9	42
8	Kilowatt-scale large air-gap multi-modular capacitive wireless power transfer system for electric vehicle charging. , $2018, , .$		41
9	Design of High-Efficiency Matching Networks for Capacitive Wireless Power Transfer Systems. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2022, 10, 104-127.	5.4	37
10	High-Performance Capacitive Wireless Power Transfer System for Electric Vehicle Charging with Enhanced Coupling Plate Design. , 2018, , .		32
11	Design tradeoffs in a multi-modular capacitive wireless power transfer system. , 2016, , .		31
12	Active Variable Reactance Rectifier—A New Approach to Compensating for Coupling Variations in Wireless Power Transfer Systems. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8, 2022-2040.	5.4	28
13	A high-frequency inverter architecture for providing variable compensation in wireless power transfer systems. , 2018, , .		23
14	High-Efficiency High-Power-Transfer-Density Capacitive Wireless Power Transfer System for Electric Vehicle Charging Utilizing Semi-Toroidal Interleaved-Foil Coupled Inductors. , 2019, , .		23
15	Multi-objective optimization of capacitive wireless power transfer systems for electric vehicle charging., 2017,,.		21
16	A very-high-power-transfer-density GaN-based capacitive wireless power transfer system. , 2017, , .		21
17	Active variable reactance rectifier — A new approach to compensating for coupling variations in wireless power transfer systems. , 2017, , .		20
18	Improved design optimization of efficient matching networks for capacitive wireless power transfer systems., 2018,,.		15

#	Article	IF	CITATIONS
19	A 3.75-kW High-Power-Transfer-Density Capacitive Wireless Charging System for EVs Utilizing Toro idal-Interleaved-Foil Coupled Inductors., 2020,,.		13
20	A Large Air-Gap Multi-MHz Capacitive Wireless Power Transfer System Using Compact Charging Pads. , 2021, , .		10
21	Impact of Foreign Objects on the Performance of Capacitive Wireless Charging Systems for Electric Vehicles. , 2018, , .		9
22	Capacitive wireless powering for electric vehicles with near-field phased arrays. , 2017, , .		7
23	Comparison of Large Air-Gap Inductive and Capacitive Wireless Power Transfer Systems. , 2021, , .		7
24	Theoretical Limits of Power Transfer in Capacitive Wireless Charging Systems. , 2020, , .		7
25	Improved design optimization approach for high efficiency matching networks. , 2016, , .		5
26	Closed-loop Control of a Dynamic Capacitive Wireless Power Transfer System., 2019,,.		4
27	A Multi-MHz Large Air-gap Capacitive Wireless Power Transfer System Utilizing an Active Variable Reactance Rectifier Suitable for Dynamic Electric Vehicle Charging. , 2019, , .		3
28	Optimized Design of High-Efficiency Immittance Matching Networks for Capacitive Wireless Power Transfer Systems. , 2021, , .		3
29	Multi-MHz Multi-kV Power Amplifier for Compact Particle Accelerators. , 2020, , .		2
30	A Variable Compensation Inverter Rectifier (VCIR) based Approach to Compensate for Coupling Variations in Wireless Power Transfer Systems. , 2021, , .		0