Jun Kunisawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5380899/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Intestinal commensal microbiota and cytokines regulate Fut2 ⁺ Paneth cells for gut defense. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	26
2	Orally desensitized mast cells form a regulatory network with Treg cells for the control of food allergy. Mucosal Immunology, 2021, 14, 640-651.	2.7	22
3	Enzymatically polymerised polyphenols prepared from various precursors potentiate antigen-specific immune responses in both mucosal and systemic compartments in mice. PLoS ONE, 2021, 16, e0246422.	1.1	5
4	Lipopolysaccharide from Gutâ€Associated Lymphoidâ€Tissueâ€Resident <i>Alcaligenes faecalis</i> : Complete Structure Determination and Chemical Synthesis of Its Lipidâ€A. Angewandte Chemie, 2021, 133, 10111-10119). ^{1.6}	1
5	Role of interleukin-6 in antigen-specific mucosal immunoglobulin A induction by cationic liposomes. International Immunopharmacology, 2021, 101, 108280.	1.7	4
6	Essential Role of Host Double-Stranded DNA Released from Dying Cells by Cationic Liposomes for Mucosal Adjuvanticity. Vaccines, 2020, 8, 8.	2.1	8
7	Impact of the intestinal environment on the immune responses to vaccination. Vaccine, 2020, 38, 6959-6965.	1.7	12
8	Microfold cell-dependent antigen transport alleviates infectious colitis by inducing antigen-specific cellular immunity. Mucosal Immunology, 2020, 13, 679-690.	2.7	26
9	Clostridium perfringens enterotoxin-based protein engineering for the vaccine design and delivery system. Vaccine, 2019, 37, 6232-6239.	1.7	7
10	Lymphoid tissue-resident Alcaligenes LPS induces IgA production without excessive inflammatory responses via weak TLR4 agonist activity. Mucosal Immunology, 2018, 11, 693-702.	2.7	65
11	The 17,18-epoxyeicosatetraenoic acid–G protein–coupled receptor 40 axis ameliorates contact hypersensitivity by inhibiting neutrophil mobility in mice and cynomolgus macaques. Journal of Allergy and Clinical Immunology, 2018, 142, 470-484.e12.	1.5	55
12	Development of antigen delivery system for mucosal vaccine. Drug Delivery System, 2018, 33, 43-49.	0.0	0
13	Nasal vaccination with pneumococcal surface protein A in combination with cationic liposomes consisting of DOTAP and DC-chol confers antigen-mediated protective immunity against Streptococcus pneumoniae infections in mice. International Immunopharmacology, 2018, 61, 385-393.	1.7	41
14	Intranasal administration of cationic liposomes enhanced granulocyte–macrophage colony-stimulating factor expression and this expression is dispensable for mucosal adjuvant activity. BMC Research Notes, 2018, 11, 472.	0.6	14
15	Polymeric Caffeic Acid Is a Safer Mucosal Adjuvant That Augments Antigen-Specific Mucosal and Systemic Immune Responses in Mice. Molecular Pharmaceutics, 2018, 15, 4226-4234.	2.3	8
16	IL-22BP dictates characteristics of Peyer's patch follicle-associated epithelium for antigen uptake. Journal of Experimental Medicine, 2017, 214, 1607-1618.	4.2	51
17	Attachment of class B CpG ODN onto DOTAP/DC-chol liposome in nasal vaccine formulations augments antigen-specific immune responses in mice. BMC Research Notes, 2017, 10, 68.	0.6	33
18	The Specific Roles of Vitamins in the Regulation of Immunosurveillance and Maintenance of Immunologic Homeostasis in the Gut. Immune Network, 2017, 17, 13.	1.6	26

Jun Kunisawa

#	Article	IF	CITATIONS
19	Dietary and Microbial Metabolites in the Regulation of Host Immunity. Frontiers in Microbiology, 2017, 8, 2171.	1.5	87
20	Dietary ω3 fatty acid exerts anti-allergic effect through the conversion to 17,18-epoxyeicosatetraenoic acid in the gut. Scientific Reports, 2015, 5, 9750.	1.6	112
21	IL-10-producing CD4+ T cells negatively regulate fucosylation of epithelial cells in the gut. Scientific Reports, 2015, 5, 15918.	1.6	26
22	C-Terminal Clostridium perfringens Enterotoxin-Mediated Antigen Delivery for Nasal Pneumococcal Vaccine. PLoS ONE, 2015, 10, e0126352.	1.1	47
23	Central Role of Core Binding Factor β2 in Mucosa-Associated Lymphoid Tissue Organogenesis in Mouse. PLoS ONE, 2015, 10, e0127460.	1.1	10
24	Intranasal Immunization with DOTAP Cationic Liposomes Combined with DC-Cholesterol Induces Potent Antigen-Specific Mucosal and Systemic Immune Responses in Mice. PLoS ONE, 2015, 10, e0139785.	1.1	48
25	Pathophysiological Role of Extracellular Purinergic Mediators in the Control of Intestinal Inflammation. Mediators of Inflammation, 2015, 2015, 1-8.	1.4	17
26	Mode of Bioenergetic Metabolism during B Cell Differentiation in the Intestine Determines the Distinct Requirement for Vitamin B1. Cell Reports, 2015, 13, 122-131.	2.9	96
27	Negative regulation of DSS-induced experimental colitis by PILRα. International Immunology, 2015, 27, 307-314.	1.8	16
28	Loss of Lymph Node Fibroblastic Reticular Cells and High Endothelial Cells Is Associated with Humoral Immunodeficiency in Mouse Graft-versus-Host Disease. Journal of Immunology, 2015, 194, 398-406.	0.4	27
29	Peyer's Patches and Mesenteric Lymph Nodes Cooperatively Promote Enteropathy in a Mouse Model of Food Allergy. PLoS ONE, 2014, 9, e107492.	1.1	24
30	Vaginal Memory T Cells Induced by Intranasal Vaccination Are Critical for Protective T Cell Recruitment and Prevention of Genital HSV-2 Disease. Journal of Virology, 2014, 88, 13699-13708.	1.5	34
31	Blockade of TLR3 protects mice from lethal radiation-induced gastrointestinal syndrome. Nature Communications, 2014, 5, 3492.	5.8	119
32	Role of Lactobacillus pentosus Strain b240 and the Toll-Like Receptor 2 Axis in Peyer's Patch Dendritic Cell-Mediated Immunoglobulin A Enhancement. PLoS ONE, 2014, 9, e91857.	1.1	41
33	The Enzyme Cyp26b1 Mediates Inhibition of Mast Cell Activation by Fibroblasts to Maintain Skin-Barrier Homeostasis. Immunity, 2014, 40, 530-541.	6.6	81
34	Regulation of Intestinal IgA Responses by Dietary Palmitic Acid and Its Metabolism. Journal of Immunology, 2014, 193, 1666-1671.	0.4	51
35	Innate lymphoid cells regulate intestinal epithelial cell glycosylation. Science, 2014, 345, 1254009.	6.0	450
36	Immune regulation and monitoring at the epithelial surface of the intestine. Drug Discovery Today, 2013, 18, 87-92.	3.2	25

Jun Kunisawa

#	Article	IF	CITATIONS
37	Microbe-dependent CD11b+ IgA+ plasma cells mediate robust early-phase intestinal IgA responses in mice. Nature Communications, 2013, 4, 1772.	5.8	59
38	Ecto-Nucleoside Triphosphate Diphosphohydrolase 7 Controls Th17 Cell Responses through Regulation of Luminal ATP in the Small Intestine. Journal of Immunology, 2013, 190, 774-783.	0.4	73
39	Extracellular ATP mediates mast cell-dependent intestinal inflammation through P2X7 purinoceptors. Nature Communications, 2012, 3, 1034.	5.8	243
40	Immunological Function of Sphingosine 1-Phosphate in the Intestine. Nutrients, 2012, 4, 154-166.	1.7	32
41	Alcaligenes is Commensal Bacteria Habituating in the Gut-Associated Lymphoid Tissue for the Regulation of Intestinal IgA Responses. Frontiers in Immunology, 2012, 3, 65.	2.2	29
42	Gut-associated lymphoid tissues for the development of oral vaccines. Advanced Drug Delivery Reviews, 2012, 64, 523-530.	6.6	119
43	A Pivotal Role of Vitamin B9 in the Maintenance of Regulatory T Cells In Vitro and In Vivo. PLoS ONE, 2012, 7, e32094.	1.1	110
44	Peaceful Mutualism in the Gut: Revealing Key Commensal Bacteria for the Creation and Maintenance of Immunological Homeostasis. Cell Host and Microbe, 2011, 9, 83-84.	5.1	15
45	Aberrant Interaction of the Gut Immune System with Environmental Factors in the Development of Food Allergies. Current Allergy and Asthma Reports, 2010, 10, 215-221.	2.4	15
46	The mucosal immune system for secretory IgA responses and mucosal vaccine development. Inflammation and Regeneration, 2010, 30, 40-47.	1.5	2
47	Immunological commonalities and distinctions between airway and digestive immunity. Trends in Immunology, 2008, 29, 505-513.	2.9	112
48	Sphingosine 1-phosphate–dependent trafficking of peritoneal B cells requires functional NFκB-inducing kinase in stromal cells. Blood, 2008, 111, 4646-4652.	0.6	25
49	Influence of commensal bacteria on the induction of UEAâ€1 + NKMâ€16â€2â€4 + cells in small intestine. FASEB Journal, 2008, 22, 851.4.	0.2	0
50	Sphingosine 1â€ p hosphate regulates innate and acquired intestinal IgA production. FASEB Journal, 2008, 22, 853.17.	0.2	0
51	Genesis of tear ductâ€associated lymphoid tissue is independent of Id2, RORγt but requires Cbfβ2 transcriptional regulator. FASEB Journal, 2008, 22, 845.1.	0.2	0
52	Sphingosine 1-phosphate dependence in the regulation of lymphocyte trafficking to the gut epithelium. Journal of Experimental Medicine, 2007, 204, 2335-2348.	4.2	70
53	Sphingosine 1-phosphate regulates peritoneal B-cell trafficking for subsequent intestinal IgA production. Blood, 2007, 109, 3749-3756.	0.6	86
54	Intraepithelial lymphocytes: their shared and divergent immunological behaviors in the small and large intestine. Immunological Reviews, 2007, 215, 136-153.	2.8	119

#	Article	IF	CITATIONS
55	Mucosa-Associated Lymphoid Tissues in the Aerodigestive Tract: Their Shared and Divergent Traits and Their Importance to the Orchestration of the Mucosal Immune System. Current Molecular Medicine, 2005, 5, 557-572.	0.6	57