Zhong-Ming Wei

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5380780/zhong-ming-wei-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

172 6,200 46 72 g-index

188 7,783 9.1 6.16 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
172	Twist-angle two-dimensional superlattices and their application in (opto)electronics. <i>Journal of Semiconductors</i> , 2022 , 43, 011001	2.3	2
171	Polarimetric Image Sensor and Fermi Level Shifting Induced Multichannel Transition Based on 2D PdPS (Adv. Mater. 2/2022). <i>Advanced Materials</i> , 2022 , 34, 2270016	24	
170	Recombination Time Mismatch and Spin Dependent Photocurrent at a Ferromagnetic-Metal-Semiconductor Tunnel Junction <i>Physical Review Letters</i> , 2022 , 128, 057701	7.4	1
169	Band-Like Charge Transport in Small-Molecule Thin Film toward High-Performance Organic Phototransistors at Low Temperature. <i>Advanced Optical Materials</i> , 2022 , 10, 2102484	8.1	3
168	2D Ultrawide Bandgap Semiconductors: Odyssey and Challenges <i>Small Methods</i> , 2022 , e2101348	12.8	2
167	Recent progress in optoelectronic applications of hybrid 2D/3D silicon-based heterostructures. <i>Science China Materials</i> , 2022 , 65, 876-895	7.1	0
166	Continuous orientated growth of scaled single-crystal 2D monolayer films. <i>Nanoscale Advances</i> , 2021 , 3, 6545-6567	5.1	O
165	Integrated polarization-sensitive amplification system for digital information transmission. <i>Nature Communications</i> , 2021 , 12, 6476	17.4	10
164	Strain-engineering on GeSe: Raman spectroscopy study. <i>Physical Chemistry Chemical Physics</i> , 2021 , 23, 26997-27004	3.6	O
163	Intrinsic Linear Dichroism of Organic Single Crystals toward High-Performance Polarization-Sensitive Photodetectors. <i>Advanced Materials</i> , 2021 , e2105665	24	6
162	Polarimetric Image Sensor and Fermi Level Shifting Induced Multichannel Transition Based on 2D PdPS. <i>Advanced Materials</i> , 2021 , e2107206	24	8
161	Polarizer-free polarimetric image sensor through anisotropic two-dimensional GeSe. <i>Science China Materials</i> , 2021 , 64, 1230-1237	7.1	6
160	Excitons in two-dimensional van der Waals heterostructures. <i>Journal Physics D: Applied Physics</i> , 2021 , 54, 053001	3	3
159	Van der Waals epitaxial growth of air-stable CrSe nanosheets with thickness-tunable magnetic order. <i>Nature Materials</i> , 2021 , 20, 818-825	27	68
158	Cross-Substitution Promoted Ultrawide Bandgap up to 4.5 LeV in a 2D Semiconductor: Gallium Thiophosphate. <i>Advanced Materials</i> , 2021 , 33, e2008761	24	13
157	The More, the Better R ecent Advances in Construction of 2D Multi-Heterostructures. <i>Advanced Functional Materials</i> , 2021 , 31, 2102049	15.6	9
156	Birefringence and Dichroism in Quasi-1D Transition Metal Trichalcogenides: Direct Experimental Investigation. <i>Small</i> , 2021 , 17, e2100457	11	5

(2021-2021)

155	Short-Wave Near-Infrared Polarization Sensitive Photodetector Based on GaSb Nanowire. <i>IEEE Electron Device Letters</i> , 2021 , 42, 549-552	4.4	6
154	Low-Noise Dual-Band Polarimetric Image Sensor Based on 1D Bi S Nanowire. <i>Advanced Science</i> , 2021 , 8, e2100075	13.6	16
153	Transition Metal Trichalcogenides: Birefringence and Dichroism in Quasi-1D Transition Metal Trichalcogenides: Direct Experimental Investigation (Small 21/2021). <i>Small</i> , 2021 , 17, 2170098	11	
152	Ferroelectric-tuned van der Waals heterojunction with band alignment evolution. <i>Nature Communications</i> , 2021 , 12, 4030	17.4	18
151	Photodetectors: Cross-Substitution Promoted Ultrawide Bandgap up to 4.5 LeV in a 2D Semiconductor: Gallium Thiophosphate (Adv. Mater. 22/2021). <i>Advanced Materials</i> , 2021 , 33, 2170169	24	
150	Large Perpendicular Magnetic Anisotropy in Ta/CoFeB/MgO on Full-Coverage Monolayer MoS and First-Principles Study of Its Electronic Structure. <i>ACS Applied Materials & Description of the Electronic Structure</i> . <i>ACS Applied Materials & Description of the Electronic Structure</i> .	9-3258	9 ¹
149	Application of transition metal dichalcogenides in mid-infrared fiber laser. <i>Nano Select</i> , 2021 , 2, 37-46	3.1	5
148	Extrinsic Photoconduction Induced Short-Wavelength Infrared Photodetectors Based on Ge-Based Chalcogenides. <i>Small</i> , 2021 , 17, e2006765	11	9
147	In-Plane Optical and Electrical Anisotropy of 2D Black Arsenic. ACS Nano, 2021, 15, 1701-1709	16.7	14
146	Direct Polarimetric Image Sensor and Wide Spectral Response Based on Quasi-1D Sb2S3 Nanowire. <i>Advanced Functional Materials</i> , 2021 , 31, 2006601	15.6	16
145	Effectively modulating thermal activated charge transport in organic semiconductors by precise potential barrier engineering. <i>Nature Communications</i> , 2021 , 12, 21	17.4	18
144	Direct Synthesis and Enhanced Rectification of Alloy-to-Alloy 2D Type-II MoS Se /SnS Se Heterostructures. <i>Advanced Materials</i> , 2021 , 33, e2006908	24	7
143	Vertical Heterostructures: Direct Synthesis and Enhanced Rectification of Alloy-to-Alloy 2D Type-II MoS2(1-x)Se2x/SnS2(1-y)Se2y Heterostructures (Adv. Mater. 8/2021). <i>Advanced Materials</i> , 2021 , 33, 217	∕ 66 59	1
142	Flexible Sensors Based on OrganicIhorganic Hybrid Materials. <i>Advanced Materials Technologies</i> , 2021 , 6, 2000889	6.8	10
141	Quantum Confinement Effects on Excitonic Properties in the 2D vdW quantum system: The ZnO/WSe2 Case. <i>Advanced Photonics Research</i> , 2021 , 2, 2000114	1.9	O
140	Nondegenerate P-Type In-Doped SnS2 Monolayer Transistor. <i>Advanced Electronic Materials</i> , 2021 , 7, 2001168	6.4	6
139	Intermediate anomalous Hall states induced by noncollinear spin structure in the magnetic topological insulator MnBi2Te4. <i>Physical Review B</i> , 2021 , 104,	3.3	2
138	Decoupling of the Electrical and Thermal Transports in Strongly Coupled Interlayer Materials. Journal of Physical Chemistry Letters, 2021, 12, 7832-7839	6.4	1

137	Tunable Alloying Improved Wide Spectrum UV-Vis-NIR and Polarization-Sensitive Photodetector Based on Sb BB e Nanowires. <i>IEEE Transactions on Electron Devices</i> , 2021 , 68, 3887-3893	2.9	5
136	Strain drived band aligment transition of the ferromagnetic VS2/C3N van derWaals heterostructure*. <i>Chinese Physics B</i> , 2021 , 30, 097507	1.2	1
135	Gate-controlled ambipolar transport in b-AsP crystals and their VIS-NIF photodetection. <i>Nanoscale</i> , 2021 , 13, 10579-10586	7.7	4
134	When graphene meets white graphene - recent advances in the construction of graphene and h-BN heterostructures. <i>Nanoscale</i> , 2021 , 13, 13174-13194	7.7	3
133	Reversible Half Wave Rectifier Based on 2D InSe/GeSe Heterostructure with Near-Broken Band Alignment. <i>Advanced Science</i> , 2021 , 8, 1903252	13.6	13
132	Preparation and Properties of 2D Semiconductors 2020 , 79-98		
131	Visible Phototransistors Based on Vertical Nanolayered Heterostructures of SnS/SnS2 pli and SnSe2/SnS2 nli Nanoflakes. <i>ACS Applied Nano Materials</i> , 2020 , 3, 6847-6854	5.6	7
130	Orbital localization induced magnetization in nonmetal-doped phosphorene. <i>Journal Physics D: Applied Physics</i> , 2020 , 53, 155001	3	1
129	From negative to positive magnetoresistance in the intrinsic magnetic topological insulator MnBi2Te4. <i>Physical Review B</i> , 2020 , 101,	3.3	12
128	Recent Advances of 2D Materials in Nonlinear Photonics and Fiber Lasers. <i>Advanced Optical Materials</i> , 2020 , 8, 1901631	8.1	78
127	Saturable absorption properties and femtosecond mode-locking application of titanium trisulfide. <i>Applied Physics Letters</i> , 2020 , 116, 061901	3.4	36
126	Polarization-Sensitive Photodetectors: Symmetry-Reduction Enhanced Polarization-Sensitive Photodetection in CoreBhell SbI3/Sb2O3 van der Waals Heterostructure (Small 7/2020). <i>Small</i> , 2020 , 16, 2070036	11	O
125	Symmetry-Reduction Enhanced Polarization-Sensitive Photodetection in Core-Shell SbI /Sb O van der Waals Heterostructure. <i>Small</i> , 2020 , 16, e1907172	11	18
124	Preparing two-dimensional crystalline conjugated polymer films by synergetic polymerization and self-assembly at air/water interface. <i>Polymer Chemistry</i> , 2020 , 11, 1572-1579	4.9	5
123	Properties of 2D Alloying and Doping 2020 , 99-122		
122	Non-layered ZnSb nanoplates for room temperature infrared polarized photodetectors. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 6388-6395	7.1	14
121	Temperature dependence of charge transport in solid-state molecular junctions based on oligo(phenylene ethynylene)s. <i>Nanotechnology</i> , 2020 , 31, 164001	3.4	2
120	Recent advances in low-dimensional semiconductor nanomaterials and their applications in high-performance photodetectors. <i>Informa</i> Materily, 2020 , 2, 291-317	23.1	54

119	Iron-doping induced multiferroic in two-dimensional In2Se3. Science China Materials, 2020, 63, 421-428	7.1	16
118	Relieving the Photosensitivity of Organic Field-Effect Transistors. <i>Advanced Materials</i> , 2020 , 32, e19061	2:24	34
117	Quasiparticle Band Structure and Optical Properties of the Janus Monolayer and Bilayer SnSSe. Journal of Physical Chemistry C, 2020 , 124, 23832-23838	3.8	9
116	Intercalation of Two-dimensional Layered Materials. <i>Chemical Research in Chinese Universities</i> , 2020 , 36, 584-596	2.2	10
115	Spin-Valve Effect in FeGeTe/MoS/FeGeTe van der Waals Heterostructures. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 43921-43926	9.5	39
114	Strong Anisotropy and Piezo-Phototronic Effect in SnO2 Microwires. <i>Advanced Electronic Materials</i> , 2020 , 6, 1901441	6.4	7
113	Transport Properties of Two-Dimensional Materials 2020 , 55-78		1
112	Two-dimensional X Se 2 (X = Mn, V) based magnetic tunneling junctions with high Curie temperature. <i>Chinese Physics B</i> , 2019 , 28, 107504	1.2	12
111	Perseverance of direct bandgap in multilayer 2D PbI 2 under an experimental strain up to 7.69%. <i>2D Materials</i> , 2019 , 6, 025014	5.9	14
110	A ternary SnSSe alloy for flexible broadband photodetectors <i>RSC Advances</i> , 2019 , 9, 14352-14359	3.7	4
109	Optical and electrical properties of two-dimensional anisotropic materials. <i>Journal of Semiconductors</i> , 2019 , 40, 061001	2.3	42
108	Multifunctional Photodetectors Based on Nanolayered Black Phosphorus/SnS0.5Se1.5 Heterostructures. <i>ACS Applied Nano Materials</i> , 2019 , 2, 3548-3555	5.6	5
107	Metal Chalcogenides: Versatile Crystal Structures and (Opto)electronic Applications of the 2D Metal Mono-, Di-, and Tri-Chalcogenide Nanosheets (Adv. Funct. Mater. 24/2019). <i>Advanced Functional Materials</i> , 2019 , 29, 1970161	15.6	2
106	Highly Polarized Photoelectrical Response in vdW ZrS3 Nanoribbons. <i>Advanced Electronic Materials</i> , 2019 , 5, 1900419	6.4	29
105	Influence of solid-state electrolyte on 2D SnS2 field effect transistors. <i>Materials Research Express</i> , 2019 , 6, 086320	1.7	3
104	Thickness-Dependent Ultrafast Photonics of SnS2 Nanolayers for Optimizing Fiber Lasers. <i>ACS Applied Nano Materials</i> , 2019 , 2, 2697-2705	5.6	35
103	Versatile Crystal Structures and (Opto)electronic Applications of the 2D Metal Mono-, Di-, and Tri-Chalcogenide Nanosheets. <i>Advanced Functional Materials</i> , 2019 , 29, 1900040	15.6	37
102	2D Functional Systems: Recent Advances in the Functional 2D Photonic and Optoelectronic Devices (Advanced Optical Materials 3/2019). <i>Advanced Optical Materials</i> , 2019 , 7, 1970010	8.1	

101	Mixed-Valence-Driven Quasi-1D SnIISnIVS3 with Highly Polarization-Sensitive UV∏isNIR Photoresponse. <i>Advanced Functional Materials</i> , 2019 , 29, 1904416	15.6	22
100	Direct Wide Bandgap 2D GeSe2 Monolayer toward Anisotropic UV Photodetection. <i>Advanced Optical Materials</i> , 2019 , 7, 1900622	8.1	36
99	Electronic structures, magnetic properties and lattice strain effects of quaternary Heusler alloys RuMnCrZ (Z = P, As, Sb). <i>Journal Physics D: Applied Physics</i> , 2019 , 52, 505003	3	1
98	Machine learning in materials science. <i>Informal</i> Materilly, 2019 , 1, 338-358	23.1	141
97	Nonvolatile memristor based on heterostructure of 2D room-temperature ferroelectric \(\frac{1}{2} \) no 3 and WSe2. <i>Science China Information Sciences</i> , 2019 , 62, 1	3.4	16
96	Recent progress in polarization-sensitive photodetectors based on low-dimensional semiconductors. <i>Wuli Xuebao/Acta Physica Sinica</i> , 2019 , 68, 163201	0.6	5
95	Magnetic and transport properties of a ferromagnetic layered semiconductor MnIn2Se4. <i>Applied Physics Letters</i> , 2019 , 115, 222101	3.4	2
94	p-MoS/n-InSe van der Waals heterojunctions and their applications in all-2D optoelectronic devices <i>RSC Advances</i> , 2019 , 9, 35039-35044	3.7	7
93	Band-like transport in small-molecule thin films toward high mobility and ultrahigh detectivity phototransistor arrays. <i>Nature Communications</i> , 2019 , 10, 12	17.4	107
92	The Coulomb interaction in van der Waals heterostructures. <i>Science China: Physics, Mechanics and Astronomy</i> , 2019 , 62, 1	3.6	19
91	Tunable Schottky barrier width and enormously enhanced photoresponsivity in Sb doped SnS2 monolayer. <i>Nano Research</i> , 2019 , 12, 463-468	10	50
90	Press-engineered funnel effect in MoS2 monolayer homojunction. <i>Journal Physics D: Applied Physics</i> , 2019 , 52, 055103	3	1
89	Electronic structure and exciton shifts in Sb-doped MoS2 monolayer. <i>Npj 2D Materials and Applications</i> , 2019 , 3,	8.8	56
88	Growth of two-dimensional materials on hexagonal boron nitride (h-BN). <i>Nanotechnology</i> , 2019 , 30, 034	4903	11
87	Recent Advances in the Functional 2D Photonic and Optoelectronic Devices. <i>Advanced Optical Materials</i> , 2019 , 7, 1801274	8.1	158
86	Multistate Logic Inverter Based on Black Phosphorus/SnSeS Heterostructure. <i>Advanced Electronic Materials</i> , 2019 , 5, 1800416	6.4	16
85	Graphyne and Its Family: Recent Theoretical Advances. <i>ACS Applied Materials & Discourse (Control of the Control of the Contro</i>	9.5	82
84	Highly polarization sensitive photodetectors based on quasi-1D titanium trisulfide (TiS). Nanotechnology, 2018 , 29, 184002	3.4	40

83	Type-I Transition Metal Dichalcogenides Lateral Homojunctions: Layer Thickness and External Electric Field Effects. <i>Small</i> , 2018 , 14, e1800365	11	30
82	Tunable electric properties of bilayer InSe with different interlayer distances and external electric field. <i>Semiconductor Science and Technology</i> , 2018 , 33, 034002	1.8	8
81	Toward High-Performance Photodetectors Based on 2D Materials: Strategy on Methods. <i>Small Methods</i> , 2018 , 2, 1700349	12.8	83
80	Two-dimensional n-InSe/p-GeSe(SnS) van der Waals heterojunctions: High carrier mobility and broadband performance. <i>Physical Review B</i> , 2018 , 97,	3.3	79
79	Diamine anchored molecular junctions of oligo(phenylene ethynylene) cruciform. <i>Chinese Chemical Letters</i> , 2018 , 29, 271-275	8.1	6
78	Various Structures of 2D Transition-Metal Dichalcogenides and Their Applications. <i>Small Methods</i> , 2018 , 2, 1800094	12.8	49
77	Type-II InSe/MoSe2(WSe2) van der Waals heterostructures: vertical strain and electric field effects. Journal of Materials Chemistry C, 2018 , 6, 10010-10019	7.1	38
76	Highly anisotropic solar-blind UV photodetector based on large-size two-dimensional ⊞MoO 3 atomic crystals. <i>2D Materials</i> , 2018 , 5, 035033	5.9	32
75	Black Arsenic: A Layered Semiconductor with Extreme In-Plane Anisotropy. <i>Advanced Materials</i> , 2018 , 30, e1800754	24	109
74	Chemical vapor deposition growth of two-dimensional heterojunctions. <i>Science China: Physics, Mechanics and Astronomy</i> , 2018 , 61, 1	3.6	42
73	Perpendicular Optical Reversal of the Linear Dichroism and Polarized Photodetection in 2D GeAs. <i>ACS Nano</i> , 2018 , 12, 12416-12423	16.7	100
72	Large tunneling magnetoresistance in magnetic tunneling junctions based on two-dimensional CrX (X = Br, I) monolayers. <i>Nanoscale</i> , 2018 , 10, 22196-22202	7.7	26
71	Field-Effect Transistors: Thickness-Dependent Carrier Transport Characteristics of a New 2D Elemental Semiconductor: Black Arsenic (Adv. Funct. Mater. 43/2018). <i>Advanced Functional Materials</i> , 2018 , 28, 1870312	15.6	1
70	Thickness-Dependent Carrier Transport Characteristics of a New 2D Elemental Semiconductor: Black Arsenic. <i>Advanced Functional Materials</i> , 2018 , 28, 1802581	15.6	8o
69	Tunable electronic and optical properties of InSe/InTe van der Waals heterostructures toward optoelectronic applications. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 7201-7206	7.1	63
68	Turning a disadvantage into an advantage: synthesizing high-quality organometallic halide perovskite nanosheet arrays for humidity sensors. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 2504-2508	7.1	52
67	Tunable Schottky Barrier at MoSe2/Metal Interfaces with a Buffer Layer. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 9305-9311	3.8	31
66	A type-II GeSe/SnS heterobilayer with a suitable direct gap, superior optical absorption and broad spectrum for photovoltaic applications. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 13400-13410	13	108

65	Light induced double bnbtate anti-ambipolar behavior and self-driven photoswitching in p-WSe 2 /n-SnS 2 heterostructures. 2D Materials, 2017, 4, 025097	5.9	46
64	High-performance photodetectors based on SbS nanowires: wavelength dependence and wide temperature range utilization. <i>Nanoscale</i> , 2017 , 9, 12364-12371	7.7	52
63	Electric field induced electronic properties modification of ZrS2/HfS2 van der Waals heterostructure. <i>RSC Advances</i> , 2017 , 7, 14625-14630	3.7	22
62	Large-scale 2D PbI monolayers: experimental realization and their indirect band-gap related properties. <i>Nanoscale</i> , 2017 , 9, 3736-3741	7.7	75
61	Short-Wave Near-Infrared Linear Dichroism of Two-Dimensional Germanium Selenide. <i>Journal of the American Chemical Society</i> , 2017 , 139, 14976-14982	16.4	191
60	A two-dimensional Fe-doped SnS magnetic semiconductor. <i>Nature Communications</i> , 2017 , 8, 1958	17.4	214
59	Type-I Ca(OH)2/\textsup MoTe2 vdW heterostructure for ultraviolet optoelectronic device applications: electric field effects. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 12629-12634	7.1	20
58	Role of defects in enhanced Fermi level pinning at interfaces between metals and transition metal dichalcogenides. <i>Physical Review B</i> , 2017 , 96,	3.3	20
57	Tunable Electronic Structures of GeSe Nanosheets and Nanoribbons. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 14373-14379	3.8	44
56	Electric field-tunable electronic structures of 2D alkaline-earth metal hydroxidegraphene heterostructures. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 7230-7235	7.1	20
55	Electrostatic gating dependent multiple-band alignments in a high-temperature ferromagnetic Mg(OH)2/VS2 heterobilayer. <i>Physical Review B</i> , 2017 , 95,	3.3	24
54	Composition-tunable 2D SnSe2(1½)S2x alloys towards efficient bandgap engineering and high performance (opto)electronics. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 84-90	7.1	64
53	Co-nucleus 1D/2D Heterostructures with Bi2S3 Nanowire and MoS2 Monolayer: One-Step Growth and Defect-Induced Formation Mechanism. <i>ACS Nano</i> , 2016 , 10, 8938-46	16.7	55
52	Gate-tunable diode-like current rectification and ambipolar transport in multilayer van der Waals ReSe/WS p-n heterojunctions. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 27750-27753	3.6	23
51	Large-Size 2D ECu S Nanosheets with Giant Phase Transition Temperature Lowering (120 K) Synthesized by a Novel Method of Super-Cooling Chemical-Vapor-Deposition. <i>Advanced Materials</i> , 2016 , 28, 8271-8276	24	46
50	Anti-Ambipolar Field-Effect Transistors Based On Few-Layer 2D Transition Metal Dichalcogenides. <i>ACS Applied Materials & Dichalcogenides</i> , 2016, 8, 15574-81	9.5	56
49	Enhanced rectification, transport property and photocurrent generation of multilayer ReSe2/MoS2 pB heterojunctions. <i>Nano Research</i> , 2016 , 9, 507-516	10	107
48	Wavelength dependent UV-Vis photodetectors from SnS2 flakes. <i>RSC Advances</i> , 2016 , 6, 422-427	3.7	48

(2014-2016)

47	Tuned polarity and enhanced optoelectronic performances of few-layer Nb0.125Re0.875Se2 flakes. <i>Applied Physics Letters</i> , 2016 , 109, 112102	3.4	6
46	Flexible photodetectors based on phase dependent PbI2 single crystals. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 6492-6499	7.1	77
45	Direct Vapor Phase Growth and Optoelectronic Application of Large Band Offset SnS2/MoS2 Vertical Bilayer Heterostructures with High Lattice Mismatch. <i>Advanced Electronic Materials</i> , 2016 , 2, 1600298	6.4	128
44	An Efficient and Low-Cost Photolithographic-Pattern-Transfer Technique to Fabricate Electrode Arrays for Micro-/Nanoelectronics. <i>Advanced Materials Technologies</i> , 2016 , 1, 1600001	6.8	23
43	Synthesis and transport properties of large-scale alloy Co(0.16)Mo(0.84)S2 bilayer nanosheets. <i>ACS Nano</i> , 2015 , 9, 1257-62	16.7	64
42	Electric-Field Tunable Band Offsets in Black Phosphorus and MoS2 van der Waals p-n Heterostructure. <i>Journal of Physical Chemistry Letters</i> , 2015 , 6, 2483-8	6.4	153
41	Novel Optical and Electrical Transport Properties in Atomically Thin WSe2/MoS2 pli Heterostructures. <i>Advanced Electronic Materials</i> , 2015 , 1, 1400066	6.4	52
40	Role of redox centre in charge transport investigated by novel self-assembled conjugated polymer molecular junctions. <i>Nature Communications</i> , 2015 , 6, 7478	17.4	37
39	Thickness-dependent Raman spectra, transport properties and infrared photoresponse of few-layer black phosphorus. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 10974-10980	7.1	85
38	Ultra-sensitive humidity sensors based on ZnSb2O4 nanoparticles. <i>RSC Advances</i> , 2015 , 5, 2429-2433	3.7	10
37	High-performance single crystalline UV photodetectors of EGa2O3. <i>Journal of Alloys and Compounds</i> , 2015 , 619, 572-575	5.7	90
36	Strain induced piezoelectric effect in black phosphorus and MoS2 van der Waals heterostructure. <i>Scientific Reports</i> , 2015 , 5, 16448	4.9	73
35	Tunable Polarity Behavior and Self-Driven Photoswitching in p-WSelln-WSiHeterojunctions. <i>Small</i> , 2015 , 11, 5430-8	11	84
34	Gate-Tunable Ultrahigh Photoresponsivity of 2D Heterostructures Based on Few Layer MoS2 and Solution-Processed rGO. <i>Advanced Electronic Materials</i> , 2015 , 1, 1500267	6.4	25
33	Improving the field-effect performance of Bi2S3 single nanowires by an asymmetric device fabrication. <i>ChemPhysChem</i> , 2015 , 16, 99-103	3.2	15
32	Molecular Heterojunctions of Oligo(phenylene ethynylene)s with Linear to Cruciform Framework. <i>Advanced Functional Materials</i> , 2015 , 25, 1700-1708	15.6	25
31	Gas-dependent photoresponse of SnS nanoparticles-based photodetectors. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 1397-1402	7.1	76
30	Photoresponsive and gas sensing field-effect transistors based on multilayer WS[hanoflakes. <i>Scientific Reports</i> , 2014 , 4, 5209	4.9	313

29	Low temperature electrical transport and photoresponsive properties of H-doped MoO3 nanosheets. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 1034-1040	7.1	25
28	Oxygen-induced abnormal photoelectric behavior of a MoO3/graphene heterocomposite. <i>RSC Advances</i> , 2014 , 4, 49873-49878	3.7	10
27	Novel and Enhanced Optoelectronic Performances of Multilayer MoS2WS2 Heterostructure Transistors. <i>Advanced Functional Materials</i> , 2014 , 24, 7025-7031	15.6	320
26	From MoS2 Microspheres to BMoO3 Nanoplates: Growth Mechanism and Photocatalytic Activities. <i>European Journal of Inorganic Chemistry</i> , 2014 , 2014, 3245-3251	2.3	36
25	Effect of electrical contact on the performance of BiBls ingle nanowire photodetectors. <i>ChemPhysChem</i> , 2014 , 15, 2510-6	3.2	17
24	Triazatriangulene as binding group for molecular electronics. <i>Langmuir</i> , 2014 , 30, 14868-76	4	24
23	Effect of the thickness of Bi2Se3 sheets on the morphologies of Bi2Se3InS nanocomposites and improved photoresponsive characteristic. <i>Journal of Materials Science: Materials in Electronics</i> , 2013 , 24, 4197-4203	2.1	4
22	Abnormal low-temperature behavior of a continuous photocurrent in Bi2S3 nanowires. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 5866	7.1	17
21	Ultrathin reduced graphene oxide films as transparent top-contacts for light switchable solid-state molecular junctions. <i>Advanced Materials</i> , 2013 , 25, 4164-70	24	68
20	Solution-processed ultrathin chemically derived graphene films as soft top contacts for solid-state molecular electronic junctions. <i>Advanced Materials</i> , 2012 , 24, 1333-9	24	75
19	Synthesis, experimental and theoretical characterization, and field-effect transistor properties of a new class of dibenzothiophene derivatives: From linear to cyclic architectures. <i>Journal of Materials Chemistry</i> , 2012 , 22, 1313-1325		40
18	Molecular junctions based on SAMs of cruciform oligo(phenylene ethynylene)s. <i>Langmuir</i> , 2012 , 28, 40°	16 _‡ 23	33
17	Inkjet-Printed Organic Electrodes for Bottom-Contact Organic Field-Effect Transistors. <i>Advanced Functional Materials</i> , 2011 , 21, 786-791	15.6	26
16	Ultrasensitive water-processed monolayer photodetectors. <i>Chemical Science</i> , 2011 , 2, 796	9.4	60
15	Development of organic field-effect properties by introducing aryl-acetylene into benzodithiophene. <i>Journal of Materials Chemistry</i> , 2010 , 20, 10931		24
14	Blending induced stack-ordering and performance improvement in a solution-processed n-type organic field-effect transistor. <i>Journal of Materials Chemistry</i> , 2010 , 20, 1203-1207		26
13	Biphase micro/nanometer sized single crystals of organic semiconductors: Control synthesis and their strong phase dependent optoelectronic properties. <i>Applied Physics Letters</i> , 2010 , 96, 143302	3.4	44
12	Organic single crystal field-effect transistors based on 6H-pyrrolo[3,2-b:4,5-b]bis[1,4]benzothiazine and its derivatives. <i>Advanced Materials</i> , 2010 , 22, 2458-62	24	48

LIST OF PUBLICATIONS

11	High-Performance Langmuir B lodgett Monolayer Transistors with High Responsivity. <i>Angewandte Chemie</i> , 2010 , 122, 6463-6467	3.6	30
10	Langmuir B logett monolayer transistors of copper phthalocyanine. <i>Applied Physics Letters</i> , 2009 , 95, 033304	3.4	21
9	Synthesis and Properties of Heteroacenes Containing Pyrrole and Thiazine Rings as Promising n-Type Organic Semiconductor Candidates. <i>Chinese Journal of Chemistry</i> , 2009 , 27, 846-849	4.9	4
8	Nanowire crystals of a rigid rod conjugated polymer. <i>Journal of the American Chemical Society</i> , 2009 , 131, 17315-20	16.4	123
7	Langmuir-Blodgett monolayer as an efficient p-conducting channel of ambipolar organic transistors and a template for n-type molecular alignment. <i>Langmuir</i> , 2009 , 25, 3349-51	4	31
6	Air-stable ambipolar organic field-effect transistor based on a novel bi-channel structure. <i>Journal of Materials Chemistry</i> , 2008 , 18, 2420		17
5	6H-Pyrrolo[3,2-b:4,5-b?]bis[1,4]benzothiazines: facilely synthesized semiconductors for organic field-effect transistors. <i>Journal of Materials Chemistry</i> , 2008 , 18, 4814		27
4	Tetrathia[22]annulene[2,1,2,1]: physical properties, crystal structure and application in organic field-effect transistors. <i>Journal of Materials Chemistry</i> , 2007 , 17, 4377		37
3	Polarization Sensitive Solar-Blind Ultraviolet Photodetectors Based on Ultrawide Bandgap KNb 3 O 8 Nanobelt with Fringe-Like Atomic Lattice. <i>Advanced Functional Materials</i> ,2111673	15.6	10
2	Polarization-sensitive and wide-spectrum photovoltaic detector based on quasi-1D ZrGeTe 4 nanoribbon. <i>Informa</i> @@Materily,	23.1	2
1	Cation-Alloying-Induced Blue-Shifted and Wide-Spectrum Polarization-Sensitive Photodetection in Quasi-1D SbBiS 3. <i>Small Structures</i> ,2200061	8.7	O