Zhenhua Dai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5380628/publications.pdf

Version: 2024-02-01

67 papers

3,083 citations

30 h-index 54 g-index

70 all docs 70 docs citations

times ranked

70

4101 citing authors

#	Article	IF	CITATIONS
1	Punicalagin Alleviates Psoriasis by Inhibiting NF- \hat{P} B-Mediated IL- \hat{I} Transcription and Caspase-1-Regulated IL- \hat{I} Secretion. Frontiers in Pharmacology, 2022, 13, 817526.	1.6	7
2	Berberine Promotes Induction of Immunological Tolerance to an Allograft via Downregulating Memory CD8+ T-Cells Through Altering the Gut Microbiota. Frontiers in Immunology, 2021, 12, 646831.	2.2	4
3	Emerging Perspectives of RNA N6-methyladenosine (m6A) Modification on Immunity and Autoimmune Diseases. Frontiers in Immunology, 2021, 12, 630358.	2.2	18
4	Paeoniflorin ameliorates murine lupus nephritis by increasing CD4+Foxp3+ Treg cells via enhancing mTNFα-TNFR2 pathway. Biochemical Pharmacology, 2021, 185, 114434.	2.0	12
5	Total Glucosides of Paeony Ameliorate Pristane-Induced Lupus Nephritis by Inducing PD-1 ligands+ Macrophages via Activating IL-4/STAT6/PD-L2 Signaling. Frontiers in Immunology, 2021, 12, 683249.	2.2	30
6	Phloridzin Ameliorates Lipid Deposition in High-Fat-Diet-Fed Mice with Nonalcoholic Fatty Liver Disease via Inhibiting the mTORC1/SREBP-1c Pathway. Journal of Agricultural and Food Chemistry, 2021, 69, 8671-8683.	2.4	6
7	Immunoregulation by Artemisinin and Its Derivatives: A New Role for Old Antimalarial Drugs. Frontiers in Immunology, 2021, 12, 751772.	2.2	15
8	Hyperoside Suppresses Renal Inflammation by Regulating Macrophage Polarization in Mice With Type 2 Diabetes Mellitus. Frontiers in Immunology, 2021, 12, 733808.	2.2	25
9	Antitumor effects of immunity-enhancing traditional Chinese medicine. Biomedicine and Pharmacotherapy, 2020, 121, 109570.	2.5	129
10	Dihydroartemisinin ameliorates psoriatic skin inflammation and its relapse by diminishing CD8 ⁺ T-cell memory in wild-type and humanized mice. Theranostics, 2020, 10, 10466-10482.	4.6	39
11	Resveratrol exerts antitumor effects by downregulating CD8 ⁺ CD122 ⁺ Tregs in murine hepatocellular carcinoma. Oncolmmunology, 2020, 9, 1829346.	2.1	40
12	A recombinant protein rLZ-8, originally extracted from <i>Ganoderma lucidum</i> , ameliorates OVA-induced lung inflammation by regulating Th17/Treg balance. Journal of Leukocyte Biology, 2020, 108, 531-545.	1.5	1
13	Shegan-Mahuang Decoction ameliorates asthmatic airway hyperresponsiveness by downregulating Th2/Th17 cells but upregulating CD4+FoxP3+ Tregs. Journal of Ethnopharmacology, 2020, 253, 112656.	2.0	35
14	Kaempferol attenuates imiquimod-induced psoriatic skin inflammation in a mouse model. Clinical and Experimental Immunology, 2019, 198, 403-415.	1.1	33
15	Betulinic acid suppresses Th17 response and ameliorates psoriasis-like murine skin inflammation. International Immunopharmacology, 2019, 73, 343-352.	1.7	20
16	Shikonin Prolongs Allograft Survival via Induction of CD4+FoxP3+ Regulatory T Cells. Frontiers in Immunology, 2019, 10, 652.	2.2	12
17	CD8+CD122+PD-1+ Tregs Synergize With Costimulatory Blockade of CD40/CD154, but Not B7/CD28, to Prolong Murine Allograft Survival. Frontiers in Immunology, 2019, 10, 306.	2.2	15
18	Genistein suppresses psoriasis-related inflammation through a STAT3–NF-κB-dependent mechanism in keratinocytes. International Immunopharmacology, 2019, 69, 270-278.	1.7	72

#	Article	IF	Citations
19	A Novel Immunosuppressant, Luteolin, Modulates Alloimmunity and Suppresses Murine Allograft Rejection. Journal of Immunology, 2019, 203, 3436-3446.	0.4	15
20	Mangiferin Attenuates Murine Lupus Nephritis by Inducing CD4+Foxp3+ Regulatory T Cells via Suppression of mTOR Signaling. Cellular Physiology and Biochemistry, 2018, 50, 1560-1573.	1.1	18
21	Chimeric Antigen Receptor (CAR) Treg: A Promising Approach to Inducing Immunological Tolerance. Frontiers in Immunology, 2018, 9, 2359.	2.2	106
22	Herbal Components of a Novel Formula PSORI-CM02 Interdependently Suppress Allograft Rejection and Induce CD8+CD122+PD-1+ Regulatory T Cells. Frontiers in Pharmacology, 2018, 9, 88.	1.6	10
23	Transcription Factor Retinoid-Related Orphan Receptor \hat{I}^3 t: A Promising Target for the Treatment of Psoriasis. Frontiers in Immunology, 2018, 9, 1210.	2.2	41
24	Esculetin Ameliorates Psoriasis-Like Skin Disease in Mice by Inducing CD4+Foxp3+ Regulatory T Cells. Frontiers in Immunology, 2018, 9, 2092.	2.2	34
25	Tanshinol suppresses cardiac allograft rejection in a murine model. Journal of Heart and Lung Transplantation, 2017, 36, 227-236.	0.3	9
26	Effects of Cigarette Smoking on Transplant Survival: Extending or Shortening It?. Frontiers in Immunology, 2017, 8, 127.	2.2	9
27	A New Immunosuppressive Molecule Emodin Induces both CD4+FoxP3+ and CD8+CD122+ Regulatory T Cells and Suppresses Murine Allograft Rejection. Frontiers in Immunology, 2017, 8, 1519.	2.2	31
28	Impacts of cigarette smoking on immune responsiveness: Up and down or upside down?. Oncotarget, 2017, 8, 268-284.	0.8	389
29	PSORI-CM02 Formula Increases CD4+ Foxp3+ Regulatory T Cell Frequency and Ameliorates Imiquimod-Induced Psoriasis in Mice. Frontiers in Immunology, 2017, 8, 1767.	2.2	29
30	Suppression of allograft rejection by CD8+CD122+PD-1+ Tregs is dictated by their Fas ligand-initiated killing of effector T cells versus Fas-mediated own apoptosis. Oncotarget, 2017, 8, 24187-24195.	0.8	26
31	Chinese medicine Ginseng and Astragalus granules ameliorate autoimmune diabetes by upregulating both CD4+FoxP3+ and CD8+CD122+PD1+ regulatory T cells. Oncotarget, 2017, 8, 60201-60209.	0.8	10
32	Identification of Novel RD1 Antigens and Their Combinations for Diagnosis of Sputum Smearâ"/Culture+ TB Patients. BioMed Research International, 2016, 2016, 1-10.	0.9	5
33	Editorial: Memory T Cells: Effectors, Regulators, and Implications for Transplant Tolerance. Frontiers in Immunology, 2016, 7, 7.	2.2	10
34	Recipients Inherit a Cardiovascular Risk Factor From Bone Marrow Donors: Implications for Screening of Donors?. American Journal of Transplantation, 2016, 16, 3318-3319.	2.6	0
35	Emodin <i>via</i> colonic irrigation modulates gut microbiota and reduces uremic toxins in rats with chronic kidney disease. Oncotarget, 2016, 7, 17468-17478.	0.8	59
36	Medicinal herbs Fructus corni and Semen cuscutae suppress allograft rejection via distinct immune mechanisms. Oncotarget, 2016, 7, 35680-35691.	0.8	6

#	Article	IF	Citations
37	CD8+CD122+ T-Cells: A Newly Emerging Regulator with Central Memory Cell Phenotypes. Frontiers in Immunology, 2015, 6, 494.	2.2	73
38	Kaempferol Promotes Transplant Tolerance by Sustaining CD4+FoxP3+ Regulatory T Cells in the Presence of Calcineurin Inhibitor. American Journal of Transplantation, 2015, 15, 1782-1792.	2.6	15
39	Immunosuppressive activity of pogostone on T cells: Blocking proliferation via S phase arrest. International Immunopharmacology, 2015, 26, 328-337.	1.7	29
40	Natural CD8+CD122+ T Cells Are More Potent in Suppression of Allograft Rejection Than CD4+CD25+ Regulatory T Cells. American Journal of Transplantation, 2014, 14, 39-48.	2.6	98
41	A naturally occurring CD8+CD122+ T-cell subset as a memory-like Treg family. Cellular and Molecular Immunology, 2014, 11, 326-331.	4.8	52
42	Apigenin Mediated Protection of OGD-Evoked Neuron-Like Injury in Differentiated PC12 Cells. Neurochemical Research, 2014, 39, 2197-2210.	1.6	46
43	lgG, lgM and lgA antibodies against the novel polyprotein in active tuberculosis. BMC Infectious Diseases, 2014, 14, 336.	1.3	22
44	Role of CD8 ⁺ regulatory T cells in organ transplantation. Burns and Trauma, 2014, 2, 18.	0.7	14
45	Cigarette Smoke Exposure Hinders Long-Term Allograft Survival by Suppressing Indoleamine 2, 3-Dioxygenase Expression. American Journal of Transplantation, 2012, 12, 610-619.	2.6	23
46	Promoting Long-Term Survival of Insulin-Producing Cell Grafts That Differentiate from Adipose Tissue-Derived Stem Cells to Cure Type 1 Diabetes. PLoS ONE, 2011, 6, e29706.	1.1	11
47	Manipulating IL-2 Availability Amid Presentation of Donor MHC Antigens Suppresses Murine Alloimmune Responses by Inducing Regulatory T Cells. PLoS ONE, 2010, 5, e8756.	1.1	2
48	Cutting Edge: Programmed Death-1 Defines CD8+CD122+ T Cells as Regulatory versus Memory T Cells. Journal of Immunology, 2010, 185, 803-807.	0.4	120
49	Interaction of Programmed Death-1 and Programmed Death-1 Ligand-1 Contributes to Testicular Immune Privilege. Transplantation, 2009, 87, 1778-1786.	0.5	60
50	Bystander Central Memory but Not Effector Memory CD8+ T Cells Suppress Allograft Rejection. Journal of Immunology, 2008, 180, 113-121.	0.4	35
51	The Role for Monocyte Chemoattractant Protein-1 in the Generation and Function of Memory CD8+ T Cells. Journal of Immunology, 2008, 180, 2886-2893.	0.4	37
52	The role of tryptophan catabolism in acquisition and effector function of memory T cells. Current Opinion in Organ Transplantation, 2008, 13, 31-35.	0.8	14
53	Suppression of Memory CD8 T Cell Generation and Function by Tryptophan Catabolism. Journal of Immunology, 2007, 178, 4260-4266.	0.4	44
54	Neutralizing IL-7 Promotes Long-Term Allograft Survival Induced by CD40/CD40L Costimulatory Blockade. American Journal of Transplantation, 2006, 6, 2851-2860.	2.6	27

#	Article	IF	Citations
55	Testicular Immune Privilege Promotes Transplantation Tolerance by Altering the Balance between Memory and Regulatory T Cells. Journal of Immunology, 2005, 174, 6161-6168.	0.4	95
56	Impaired Recall of CD8 Memory T Cells in Immunologically Privileged Tissue. Journal of Immunology, 2005, 174, 1165-1170.	0.4	57
57	The Allograft Defines the Type of Rejection (Acute versus Chronic) in the Face of an Established Effector Immune Response. Journal of Immunology, 2004, 172, 7813-7820.	0.4	73
58	Technique for retransplanting heterotopic heart grafts in mice. Microsurgery, 2004, 24, 465-467.	0.6	3
59	CD4+CD25+ regulatory T cells suppress allograft rejection mediated by memory CD8+ T cells via a CD30-dependent mechanism. Journal of Clinical Investigation, 2004, 113, 310-317.	3.9	211
60	Recall and propagation of allospecific memory T cells independent of secondary lymphoid organs. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 6175-6180.	3.3	149
61	Increased expression of unmethylated CDKN2D by 5-aza-2′-deoxycytidine in human lung cancer cells. Oncogene, 2001, 20, 7787-7796.	2.6	105
62	Cutting Edge: Secondary Lymphoid Organs Are Essential for Maintaining the CD4, But Not CD8, Naive T Cell Pool. Journal of Immunology, 2001, 167, 6711-6715.	0.4	75
63	The Dual Role of IL-2 in the Generation and Maintenance of CD8+ Memory T Cells. Journal of Immunology, 2000, 165, 3031-3036.	0.4	83
64	ALLOANTIGEN-DRIVEN T CELL DEATH MEDIATED BY FAS LIGAND AND TUMOR NECROSIS FACTOR-?? IS NOT ESSENTIAL FOR THE INDUCTION OF ALLOGRAFT ACCEPTANCE1. Transplantation, 2000, 69, 2428-2432.	0.5	19
65	The role of cytokines, CTLA-4 and costimulation in transplant tolerance and rejection. Current Opinion in Immunology, 1999, 11, 504-508.	2.4	67
66	INTERFERON-?? IS NECESSARY FOR INITIATING THE ACUTE REJECTION OF MAJOR HISTOCOMPATIBILITY COMPLEX CLASS II-DISPARATE SKIN ALLOGRAFTS1. Transplantation, 1999, 67, 1362-1365.	0.5	54
67	REGULATION OF ALLOANTIGEN-MEDIATED T-CELL PROLIFERATION BY ENDOGENOUS INTERFERON-Î ³ . Transplantation, 1999, 68, 124-129.	0.5	49