
Xiangwu Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5380537/publications.pdf Version: 2024-02-01

XIANCWILZHANC

#	Article	IF	CITATIONS
1	Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy and Environmental Science, 2011, 4, 2682.	15.6	2,057
2	A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy and Environmental Science, 2014, 7, 3857-3886.	15.6	1,152
3	<i>In Situ</i> TEM Study of Lithiation Behavior of Silicon Nanoparticles Attached to and Embedded in a Carbon Matrix. ACS Nano, 2012, 6, 8439-8447.	7.3	321
4	Composite solid electrolytes for all-solid-state lithium batteries. Materials Science and Engineering Reports, 2019, 136, 27-46.	14.8	311
5	Lithium–oxygen batteries—Limiting factors that affect performance. Journal of Power Sources, 2011, 196, 4436-4444.	4.0	299
6	Centrifugal Spinning: An Alternative Approach to Fabricate Nanofibers at High Speed and Low Cost. Polymer Reviews, 2014, 54, 677-701.	5.3	281
7	Li _{0.33} La _{0.557} TiO ₃ ceramic nanofiber-enhanced polyethylene oxide-based composite polymer electrolytes for all-solid-state lithium batteries. Journal of Materials Chemistry A, 2018, 6, 4279-4285.	5.2	280
8	Time dependence of piezoresistance for the conductor-filled polymer composites. Journal of Polymer Science, Part B: Polymer Physics, 2000, 38, 2739-2749.	2.4	269
9	Nitrogen-doped carbon nanofibers derived from polyacrylonitrile for use as anode material in sodium-ion batteries. Carbon, 2015, 94, 189-195.	5.4	260
10	Aligned Carbon Nanotubeâ€Silicon Sheets: A Novel Nanoâ€architecture for Flexible Lithium Ion Battery Electrodes. Advanced Materials, 2013, 25, 5109-5114.	11.1	232
11	Electrospun hydrophilic fumed silica/polyacrylonitrile nanofiber-based composite electrolyte membranes. Electrochimica Acta, 2009, 54, 3630-3637.	2.6	231
12	Porous carbon nanofibers from electrospun polyacrylonitrile/SiO2 composites as an energy storage material. Carbon, 2009, 47, 3346-3354.	5.4	226
13	Highly porous polyacrylonitrile/graphene oxide membrane separator exhibiting excellent anti-self-discharge feature for high-performance lithium–sulfur batteries. Carbon, 2016, 101, 272-280.	5.4	214
14	Fabrication of porous carbon nanofibers and their application as anode materials for rechargeable lithium-ion batteries. Nanotechnology, 2009, 20, 155705.	1.3	213
15	α-Fe ₂ O ₃ Nanoparticle-Loaded Carbon Nanofibers as Stable and High-Capacity Anodes for Rechargeable Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2012, 4, 2672-2679.	4.0	194
16	A sustainable platform of lignin: From bioresources to materials and their applications in rechargeable batteries and supercapacitors. Progress in Energy and Combustion Science, 2020, 76, 100788.	15.8	191
17	A novel separator coated by carbon for achieving exceptional high performance lithium-sulfur batteries. Nano Energy, 2016, 20, 176-184.	8.2	189
18	Electrospun carbon nanofibers containing silicon particles as an energy-storage medium. Carbon, 2009, 47, 3219-3226.	5.4	188

#	Article	IF	CITATIONS
19	Developments of Advanced Electrospinning Techniques: A Critical Review. Advanced Materials Technologies, 2021, 6, 2100410.	3.0	183
20	Electrospun Nanofiber-Based Anodes, Cathodes, and Separators for Advanced Lithium-Ion Batteries. Polymer Reviews, 2011, 51, 239-264.	5.3	182
21	Nanoparticle-on-nanofiber hybrid membrane separators for lithium-ion batteries via combining electrospraying and electrospinning techniques. Journal of Membrane Science, 2014, 456, 57-65.	4.1	180
22	Electrochemical performance of lithium ion battery, nano-silicon-based, disordered carbon composite anodes with different microstructures. Journal of Power Sources, 2004, 125, 206-213.	4.0	161
23	Parameter study and characterization for polyacrylonitrile nanofibers fabricated via centrifugal spinning process. European Polymer Journal, 2013, 49, 3834-3845.	2.6	157
24	Electrospun Carbon-Tin Oxide Composite Nanofibers for Use as Lithium Ion Battery Anodes. ACS Applied Materials & Interfaces, 2011, 3, 2534-2542.	4.0	156
25	Fabrication of carbon nanofiber-driven electrodes from electrospun polyacrylonitrile/polypyrrole bicomponents for high-performance rechargeable lithium-ion batteries. Journal of Power Sources, 2010, 195, 2050-2056.	4.0	154
26	Understanding glass fiber membrane used as a novel separator for lithium–sulfur batteries. Journal of Membrane Science, 2016, 504, 89-96.	4.1	152
27	Carbon-Coated Si Nanoparticles Dispersed in Carbon Nanotube Networks As Anode Material for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2013, 5, 21-25.	4.0	148
28	Silica/polyacrylonitrile hybrid nanofiber membrane separators via sol-gel and electrospinning techniques for lithium-ion batteries. Journal of Power Sources, 2016, 313, 205-212.	4.0	141
29	Durable antibacterial Ag/polyacrylonitrile (Ag/PAN) hybrid nanofibers prepared by atmospheric plasma treatment and electrospinning. European Polymer Journal, 2011, 47, 1402-1409.	2.6	139
30	Carbon-Confined SnO ₂ -Electrodeposited Porous Carbon Nanofiber Composite as High-Capacity Sodium-Ion Battery Anode Material. ACS Applied Materials & Interfaces, 2015, 7, 18387-18396.	4.0	138
31	Preparation and electrochemical characterization of ionic-conducting lithium lanthanum titanate oxide/polyacrylonitrile submicron composite fiber-based lithium-ion battery separators. Journal of Power Sources, 2011, 196, 436-441.	4.0	137
32	Heat treatment of electrospun Polyvinylidene fluoride fibrous membrane separators for rechargeable lithium-ion batteries. Journal of Power Sources, 2013, 240, 204-211.	4.0	135
33	Fabrication of porous carbon/Si composite nanofibers as high-capacity battery electrodes. Electrochemistry Communications, 2009, 11, 1146-1149.	2.3	132
34	Preparation and characterization of carbon-coated NaVPO 4 F as cathode material for rechargeable sodium-ion batteries. Journal of Power Sources, 2014, 247, 770-777.	4.0	131
35	Evaluation of Si/carbon composite nanofiber-based insertion anodes for new-generation rechargeable lithium-ion batteries. Energy and Environmental Science, 2010, 3, 124-129.	15.6	130
36	Recent progress in polymer materials for advanced lithium-sulfur batteries. Progress in Polymer Science, 2019, 90, 118-163.	11.8	130

#	Article	IF	CITATIONS
37	Effect of CVD carbon coatings on Si@CNF composite as anode for lithium-ion batteries. Nano Energy, 2013, 2, 976-986.	8.2	129
38	Interlayer design based on carbon materials for lithium–sulfur batteries: a review. Journal of Materials Chemistry A, 2020, 8, 10709-10735.	5.2	128
39	Carbon Nanotube-Loaded Electrospun LiFePO ₄ /Carbon Composite Nanofibers As Stable and Binder-Free Cathodes for Rechargeable Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2012, 4, 1273-1280.	4.0	126
40	One-step synthesis of silver nanoparticle-filled nylon 6 nanofibers and their antibacterial properties. Journal of Materials Chemistry, 2011, 21, 10330.	6.7	123
41	A novel bi-functional double-layer rGO–PVDF/PVDF composite nanofiber membrane separator with enhanced thermal stability and effective polysulfide inhibition for high-performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2017, 5, 15096-15104.	5.2	121
42	Evaluation of electrospun SiO2/nylon 6,6 nanofiber membranes as a thermally-stable separator for lithium-ion batteries. Electrochimica Acta, 2014, 133, 501-508.	2.6	119
43	High cyclability of carbon-coated TiO2 nanoparticles as anode for sodium-ion batteries. Electrochimica Acta, 2015, 157, 142-148.	2.6	118
44	Flexible polyaniline-carbon nanofiber supercapacitor electrodes. Journal of Energy Storage, 2019, 24, 100766.	3.9	115
45	Porous carbon nanofibers loaded with manganese oxide particles: Formation mechanism and electrochemical performance as energy-storage materials. Journal of Materials Chemistry, 2009, 19, 5593.	6.7	114
46	Ultrafine polyacrylonitrile/silica composite fibers via electrospinning. Materials Letters, 2008, 62, 2161-2164.	1.3	112
47	Manganese oxide nanoparticle-loaded porous carbon nanofibers as anode materials for high-performance lithium-ion batteries. Electrochemistry Communications, 2009, 11, 795-798.	2.3	109
48	Generation of activated carbon nanofibers from electrospun polyacrylonitrile-zinc chloride composites for use as anodes in lithium-ion batteries. Electrochemistry Communications, 2009, 11, 684-687.	2.3	107
49	Fabrication and electrochemical characteristics of electrospun LiFePO4/carbon composite fibers for lithium-ion batteries. Journal of Power Sources, 2011, 196, 7692-7699.	4.0	107
50	Hollow core–shell structured silicon@carbon nanoparticles embed in carbon nanofibers as binder-free anodes for lithium-ion batteries. Journal of Power Sources, 2017, 342, 467-475.	4.0	106
51	Garnet-rich composite solid electrolytes for dendrite-free, high-rate, solid-state lithium-metal batteries. Energy Storage Materials, 2020, 26, 448-456.	9.5	104
52	Electrospun polyacrylonitrile fibers with dispersed Si nanoparticles and their electrochemical behaviors after carbonization. Journal of Materials Chemistry, 2009, 19, 4992.	6.7	103
53	A laser ultrasound transducer using carbon nanofibers–polydimethylsiloxane composite thin film. Applied Physics Letters, 2015, 106, .	1.5	103
54	Flexible electrolyte-cathode bilayer framework with stabilized interface for room-temperature all-solid-state lithium-sulfur batteries. Energy Storage Materials, 2019, 17, 220-225.	9.5	98

#	Article	IF	CITATIONS
55	Carbon-enhanced electrodeposited SnO2/carbon nanofiber composites as anode for lithium-ion batteries. Journal of Power Sources, 2014, 264, 240-247.	4.0	96
56	Poly(vinyl Alcohol) Borate Gel Polymer Electrolytes Prepared by Electrodeposition and Their Application in Electrochemical Supercapacitors. ACS Applied Materials & Interfaces, 2016, 8, 3473-3481.	4.0	92
57	Ultrafine and polar ZrO2-inlaid porous nitrogen-doped carbon nanofiber as efficient polysulfide absorbent for high-performance lithium-sulfur batteries with long lifespan. Chemical Engineering Journal, 2018, 349, 376-387.	6.6	91
58	Electrodeposited MnOx/carbon nanofiber composites for use as anode materials in rechargeable lithium-ion batteries. Journal of Power Sources, 2010, 195, 5025-5031.	4.0	89
59	Structure control and performance improvement of carbon nanofibers containing a dispersion of silicon nanoparticles for energy storage. Carbon, 2013, 51, 185-194.	5.4	88
60	Preparation and characterization of silica nanoparticulate–polyacrylonitrile composite and porous nanofibers. Nanotechnology, 2008, 19, 085605.	1.3	87
61	Fabrication and characterization of LATP/PAN composite fiber-based lithium-ion battery separators. Electrochimica Acta, 2011, 56, 6474-6480.	2.6	86
62	Electrospun nanofiber oated separator membranes for lithiumâ€ion rechargeable batteries. Journal of Applied Polymer Science, 2013, 129, 1939-1951.	1.3	86
63	Copper-doped Li4Ti5O12/carbon nanofiber composites as anode for high-performance sodium-ion batteries. Journal of Power Sources, 2014, 272, 860-865.	4.0	86
64	Biomass-derived porous carbon modified glass fiber separator as polysulfide reservoir for Li-S batteries. Journal of Colloid and Interface Science, 2018, 513, 231-239.	5.0	86
65	SiO2/polyacrylonitrile membranes via centrifugal spinning as a separator for Li-ion batteries. Journal of Power Sources, 2015, 273, 1114-1119.	4.0	85
66	Chemical interaction and enhanced interfacial ion transport in a ceramic nanofiber–polymer composite electrolyte for all-solid-state lithium metal batteries. Journal of Materials Chemistry A, 2020, 8, 7261-7272.	5.2	85
67	Si/C composite nanofibers with stable electric conductive network for use as durable lithium-ion battery anode. Nano Energy, 2013, 2, 361-367.	8.2	84
68	Glass fiber separatorÂcoated by porous carbon nanofiber derived fromÂimmiscible PAN/PMMA forÂhigh-performance lithium-sulfur batteries. Journal of Membrane Science, 2018, 552, 31-42.	4.1	83
69	A Single-Ion Conducting UiO-66 Metal–Organic Framework Electrolyte for All-Solid-State Lithium Batteries. ACS Applied Energy Materials, 2020, 3, 4007-4013.	2.5	83
70	Inâ \in S itu Encapsulation of Nickel Particles in Electrospun Carbon Nanofibers and the Resultant Electrochemical Performance. Chemistry - A European Journal, 2009, 15, 10718-10722.	1.7	80
71	A liquid metal assisted dendrite-free anode for high-performance Zn-ion batteries. Journal of Materials Chemistry A, 2021, 9, 5597-5605.	5.2	78
72	Polyaniline/MnO2/porous carbon nanofiber electrodes for supercapacitors. Journal of Electroanalytical Chemistry, 2020, 861, 113995.	1.9	77

#	Article	IF	CITATIONS
73	Assembly of Carbon–SnO ₂ Core–Sheath Composite Nanofibers for Superior Lithium Storage. Chemistry - A European Journal, 2010, 16, 11543-11548.	1.7	76
74	Superacidic Electrospun Fiberâ€Nafion Hybrid Proton Exchange Membranes. Advanced Energy Materials, 2011, 1, 1133-1140.	10.2	76
75	Fabrication and characterization of SiO ₂ /PVDF composite nanofiberâ€coated PP nonwoven separators for lithiumâ€ion batteries. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 1719-1726.	2.4	76
76	Pyrolytic carbon-coated silicon/carbon nanofiber composite anodes for high-performance lithium-ion batteries. Journal of Power Sources, 2015, 298, 130-137.	4.0	76
77	Cr-doped Li2MnSiO4/carbon composite nanofibers as high-energy cathodes for Li-ion batteries. Journal of Materials Chemistry, 2012, 22, 14661.	6.7	75
78	Sulfur gradient-distributed CNF composite: a self-inhibiting cathode for binder-free lithium–sulfur batteries. Chemical Communications, 2014, 50, 10277-10280.	2.2	75
79	Flexible binder-free silicon/silica/carbon nanofiber composites as anode for lithium–ion batteries. Electrochimica Acta, 2015, 169, 52-60.	2.6	75
80	Centrifugal spinning: A novel approach to fabricate porous carbon fibers as binder-free electrodes for electric double-layer capacitors. Journal of Power Sources, 2015, 273, 502-510.	4.0	72
81	In-situ formation of tin-antimony sulfide in nitrogen-sulfur Co-doped carbon nanofibers as high performance anode materials for sodium-ion batteries. Carbon, 2017, 120, 380-391.	5.4	71
82	Fe ₃ O ₄ /Fe ₂ O ₃ /Fe nanoparticles anchored on N-doped hierarchically porous carbon nanospheres as a high-efficiency ORR electrocatalyst for rechargeable Zn–air batteries. Journal of Materials Chemistry A, 2021, 9, 2764-2774.	5.2	71
83	Characteristics of lithium-ion-conducting composite polymer-glass secondary cell electrolytes. Journal of Power Sources, 2002, 112, 209-215.	4.0	70
84	Fabrication and Electrochemical Characteristics of LiFePO ₄ Powders for Lithium-Ion Batteries. KONA Powder and Particle Journal, 2010, 28, 50-73.	0.9	70
85	High-capacity Li2Mn0.8Fe0.2SiO4/carbon composite nanofiber cathodes for lithium-ion batteries. Journal of Power Sources, 2012, 213, 10-15.	4.0	70
86	Use of a tin antimony alloy-filled porous carbon nanofiber composite as an anode in sodium-ion batteries. RSC Advances, 2015, 5, 30793-30800.	1.7	70
87	Electrospun polyacrylonitrile/zinc chloride composite nanofibers and their response to hydrogen sulfide. Polymer, 2009, 50, 605-612.	1.8	67
88	Polymethylmethacrylate/Polyacrylonitrile Membranes via Centrifugal Spinning as Separator in Li-Ion Batteries. Polymers, 2015, 7, 629-643.	2.0	66
89	Hierarchical multi-component nanofiber separators for lithium polysulfide capture in lithium–sulfur batteries: an experimental and molecular modeling study. Journal of Materials Chemistry A, 2016, 4, 13572-13581.	5.2	66
90	Porous one-dimensional carbon/iron oxide composite for rechargeable lithium-ion batteries with high and stable capacity. Journal of Alloys and Compounds, 2016, 672, 79-85.	2.8	66

#	Article	IF	CITATIONS
91	Preparation and properties of nanofiber-coated composite membranes as battery separators via electrospinning. Journal of Materials Science, 2013, 48, 2690-2700.	1.7	64
92	Sulfonated Polystyrene Fiber Network-Induced Hybrid Proton Exchange Membranes. ACS Applied Materials &	4.0	63
93	Tin nanoparticle-loaded porous carbon nanofiber composite anodes for high current lithium-ion batteries. Journal of Power Sources, 2015, 278, 660-667.	4.0	63
94	Sandwich structure of graphene-protected silicon/carbon nanofibers for lithium-ion battery anodes. Electrochimica Acta, 2016, 210, 53-60.	2.6	63
95	Synthesis and characterization of xLi2MnO3·(1Ââ~ʾÂx)LiMn1/3Ni1/3Co1/3O2 composite cathode materials for rechargeable lithium-ion batteries. Journal of Power Sources, 2013, 241, 522-528.	4.0	62
96	Facile fabrication of foldable electrospun polyacrylonitrile-based carbon nanofibers for flexible lithium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 12914-12921.	5.2	62
97	Solvent-Free Composite PEO-Ceramic Fiber/Mat Electrolytes for Lithium Secondary Cells. Journal of the Electrochemical Society, 2005, 152, A205.	1.3	60
98	Chamber-confined silicon–carbon nanofiber composites for prolonged cycling life of Li-ion batteries. Nanoscale, 2014, 6, 7489-7495.	2.8	60
99	High-Performance 3-D Fiber Network Composite Electrolyte Enabled with Li-Ion Conducting Nanofibers and Amorphous PEO-Based Cross-Linked Polymer for Ambient All-Solid-State Lithium-Metal Batteries. Advanced Fiber Materials, 2019, 1, 46-60.	7.9	59
100	Controlled Synthesis of Carbon Nanofibers Anchored with ZnxCo3–xO4 Nanocubes as Binder-Free Anode Materials for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 2591-2599.	4.0	57
101	A simple method to encapsulate SnSb nanoparticles into hollow carbon nanofibers with superior lithium-ion storage capability. Journal of Materials Chemistry A, 2013, 1, 13807.	5.2	56
102	Hollow Co3O4-x nanoparticles decorated N-doped porous carbon prepared by one-step pyrolysis as an efficient ORR electrocatalyst for rechargeable Zn-air batteries. Carbon, 2021, 181, 87-98.	5.4	56
103	Formation and electrochemical performance of copper/carbon composite nanofibers. Electrochimica Acta, 2010, 55, 1605-1611.	2.6	55
104	Chemical vapor deposited MoS2/electrospun carbon nanofiber composite as anode material for high-performance sodium-ion batteries. Electrochimica Acta, 2016, 222, 1751-1760.	2.6	55
105	Impedance spectra of carbon black filled high-density polyethylene composites. Journal of Applied Polymer Science, 2005, 98, 1344-1350.	1.3	54
106	Multifunctional ZnO/Nylon 6 nanofiber mats by an electrospinning–electrospraying hybrid process for use in protective applications. Science and Technology of Advanced Materials, 2011, 12, 055004.	2.8	54
107	The study on structure and electrochemical sodiation of one-dimensional nanocrystalline TiO2@C nanofiber composites. Electrochimica Acta, 2015, 176, 989-996.	2.6	54
108	Inhibition of Lithium Dendrites by Fumed Silica-Based Composite Electrolytes. Journal of the Electrochemical Society, 2004, 151, A1257.	1.3	53

#	Article	IF	CITATIONS
109	The effects of electrospinning parameters on coaxial Sn/C nanofibers: Morphology and lithium storage performance. Electrochimica Acta, 2014, 121, 345-351.	2.6	53
110	Free-standing polyaniline–porous carbon nanofiber electrodes for symmetric and asymmetric supercapacitors. RSC Advances, 2014, 4, 59427-59435.	1.7	53
111	Photosensitizer-Embedded Polyacrylonitrile Nanofibers as Antimicrobial Non-Woven Textile. Nanomaterials, 2016, 6, 77.	1.9	51
112	Advanced Zinc Anode with Nitrogenâ€Đoping Interface Induced by Plasma Surface Treatment. Advanced Science, 2022, 9, e2103952.	5.6	51
113	Nanosized Ge@CNF, Ge@C@CNF and Ge@CNF@C composites via chemical vapour deposition method for use in advanced lithium-ion batteries. Journal of Power Sources, 2014, 253, 366-372.	4.0	50
114	Controllable synthesis of carbon-coated SnâįįSnO 2 âįįcarbon-nanofiber membrane as advanced binder-free anode for lithium-ion batteries. Electrochimica Acta, 2016, 188, 661-670.	2.6	50
115	In Situ Polymerization of Nanostructured Conductive Polymer on 3D Sulfur/Carbon Nanofiber Composite Network as Cathode for Highâ€Performance Lithium–Sulfur Batteries. Advanced Materials Interfaces, 2018, 5, 1701598.	1.9	50
116	Electrospun Li4Ti5O12/C composites for lithium-ion batteries with high rate performance. Solid State lonics, 2011, 204-205, 61-65.	1.3	49
117	Synthesis of Nitrogenâ€Doped Electrospun Carbon Nanofibers as Anode Material for Highâ€Performance Sodiumâ€lon Batteries. Energy Technology, 2016, 4, 1440-1449.	1.8	49
118	Electrospun carbon nanofibers decorated with various amounts of electrochemically-inert nickel nanoparticles for use as high-performance energy storage materials. RSC Advances, 2012, 2, 192-198.	1.7	48
119	ZnO-assisted synthesis of lignin-based ultra-fine microporous carbon nanofibers for supercapacitors. Journal of Colloid and Interface Science, 2021, 586, 412-422.	5.0	48
120	High-rate capability of LiFePO4 cathode materials containing Fe2P and trace carbon. Journal of Power Sources, 2012, 199, 256-262.	4.0	47
121	Hollow carbon sphere with open pore encapsulated MnO2 nanosheets as high-performance anode materials for lithium ion batteries. Electrochimica Acta, 2018, 260, 783-788.	2.6	47
122	Reduced Graphene Oxide-Incorporated SnSb@CNF Composites as Anodes for High-Performance Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 9696-9703.	4.0	46
123	Preparation and characterization of electrospun nanofiber-coated membrane separators for lithium-ion batteries. Journal of Solid State Electrochemistry, 2014, 18, 2451-2458.	1.2	45
124	Comparison of Si/C, Ge/C and Sn/C composite nanofiber anodes used in advanced lithium-ion batteries. Solid State Ionics, 2014, 254, 17-26.	1.3	44
125	One-dimensional SiOC/C composite nanofibers as binder-free anodes for lithium-ion batteries. Journal of Power Sources, 2014, 254, 33-38.	4.0	44
126	B, N, F tri-doped lignin-derived carbon nanofibers as an efficient metal-free bifunctional electrocatalyst for ORR and OER in rechargeable liquid/solid-state Zn-air batteries. Applied Surface Science, 2022, 598, 153891.	3.1	44

#	Article	IF	CITATIONS
127	Tuning electrochemical performance of Si-based anodes for lithium-ion batteries by employing atomic layer deposition alumina coating. Journal of Materials Chemistry A, 2014, 2, 11417-11425.	5.2	43
128	Hydrothermally synthesised NiCoP nanostructures and electrospun N-doped carbon nanofiber as multifunctional potential electrode for hybrid water electrolyser and supercapatteries. Electrochimica Acta, 2019, 296, 1083-1094.	2.6	43
129	Highly Transparent and Colorless Nanocellulose/Polyimide Substrates with Enhanced Thermal and Mechanical Properties for Flexible OLED Displays. Advanced Materials Interfaces, 2020, 7, 2000928.	1.9	43
130	Carbon-Confined PVA-Derived Silicon/Silica/Carbon Nanofiber Composites as Anode for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2014, 161, A2197-A2203.	1.3	42
131	BODIPY-embedded electrospun materials in antimicrobial photodynamic inactivation. Photochemical and Photobiological Sciences, 2019, 18, 1923-1932.	1.6	42
132	Piezoresistance of conductor filled insulator composites. Polymer International, 2001, 50, 229-236.	1.6	41
133	Fabrication of carbon fibers with nanoporous morphologies from electrospun polyacrylonitrile/poly(<scp>L</scp> â€actide) blends. Journal of Polymer Science, Part B: Polymer Physics, 2009, 47, 493-503.	2.4	41
134	Electrospun Kraft Lignin/Cellulose Acetate-Derived Nanocarbon Network as an Anode for High-Performance Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 44368-44375.	4.0	41
135	Washable, durable and flame retardant conductive textiles based on reduced graphene oxide modification. Cellulose, 2020, 27, 1763-1771.	2.4	41
136	Highly proton conductive electrolyte membranes: Fiber-induced long-range ionic channels. Electrochemistry Communications, 2011, 13, 1005-1008.	2.3	40
137	Effect of reduced graphene oxide reduction degree on the performance of polysulfide rejection in lithium-sulfur batteries. Carbon, 2018, 126, 594-600.	5.4	40
138	SnS hollow nanofibers as anode materials for sodium-ion batteries with high capacity and ultra-long cycling stability. Chemical Communications, 2019, 55, 505-508.	2.2	40
139	Polymer-ceramic composite electrolytes for all-solid-state lithium batteries: Ionic conductivity and chemical interaction enhanced by oxygen vacancy in ceramic nanofibers. Journal of Power Sources, 2021, 495, 229796.	4.0	40
140	High-strength, thermally stable nylon 6,6 composite nanofiber separators for lithium-ion batteries. Journal of Materials Science, 2017, 52, 5232-5241.	1.7	39
141	Electrospun ZnO–SnO2 composite nanofibers with enhanced electrochemical performance as lithium-ion anodes. Ceramics International, 2016, 42, 10826-10832.	2.3	38
142	Electrospun ultrathin nylon fibers for protective applications. Journal of Applied Polymer Science, 2010, 116, 2181-2187.	1.3	37
143	Coaxial electrospun Si/C–C core–shell composite nanofibers as binder-free anodes for lithium-ion batteries. Solid State Ionics, 2014, 258, 67-73.	1.3	37
144	Polyvinylidene fluorideâ€ <i>co</i> â€chlorotrifluoroethylene and polyvinylidene fluorideâ€ <i>co</i> â€hexafluoropropylene nanofiberâ€coated polypropylene microporous battery separator membranes. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 349-357.	2.4	35

#	Article	IF	CITATIONS
145	Diameter control of electrospun polyacrylonitrile/iron acetylacetonate ultrafine nanofibers. Journal of Polymer Science, Part B: Polymer Physics, 2008, 46, 1611-1618.	2.4	34
146	Formation and characterization of core-sheath nanofibers through electrospinning and surface-initiated polymerization. Polymer, 2010, 51, 4368-4374.	1.8	34
147	Centrifugally-spun tin-containing carbon nanofibers as anode material for lithium-ion batteries. Journal of Materials Science, 2015, 50, 1094-1102.	1.7	34
148	Superior high-voltage aqueous carbon/carbon supercapacitors operating with in situ electrodeposited polyvinyl alcohol borate gel polymer electrolytes. Journal of Materials Chemistry A, 2016, 4, 16588-16596.	5.2	34
149	Self-discharge of secondary lithium-ion graphite anodes. Journal of Power Sources, 2002, 112, 98-104.	4.0	33
150	Atmospheric plasma treatment of preâ€electrospinning polymer solution: A feasible method to improve electrospinnability. Journal of Polymer Science, Part B: Polymer Physics, 2011, 49, 115-122.	2.4	33
151	Novel atmospheric plasma enhanced chitosan nanofiber/gauze composite wound dressings. Journal of Applied Polymer Science, 2013, 129, 916-923.	1.3	33
152	Pyrolytic-carbon coating in carbon nanotube foams for better performance in supercapacitors. Journal of Power Sources, 2017, 343, 492-501.	4.0	33
153	High-performance SnSb@rGO@CMF composites as anode material for sodium-ion batteries through high-speed centrifugal spinning. Journal of Alloys and Compounds, 2018, 752, 296-302.	2.8	33
154	Multifunctional Highâ€Performance Electrocatalytic Properties of Nb ₂ O ₅ Incorporated Carbon Nanofibers as Pt Support Catalyst. Advanced Materials Interfaces, 2019, 6, 1900565.	1.9	33
155	Carbon black-based porous sub-micron carbon fibers for flexible supercapacitors. Applied Surface Science, 2021, 537, 147914.	3.1	33
156	LiFePO4 nanoparticles encapsulated in graphene-containing carbon nanofibers for use as energy storage materials. Journal of Renewable and Sustainable Energy, 2012, 4, .	0.8	32
157	Improvement of cyclability of silicon-containing carbon nanofiber anodes for lithium-ion batteries by employing succinic anhydride as an electrolyte additive. Journal of Solid State Electrochemistry, 2013, 17, 1393-1399.	1.2	32
158	Enhanced Rate Capability by Employing Carbon Nanotube-Loaded Electrospun Si/C Composite Nanofibers As Binder-Free Anodes. Journal of the Electrochemical Society, 2013, 160, A528-A534.	1.3	31
159	Binding Conductive Ink Initiatively and Strongly: Transparent and Thermally Stable Cellulose Nanopaper as a Promising Substrate for Flexible Electronics. ACS Applied Materials & Interfaces, 2019, 11, 20281-20290.	4.0	31
160	Fe3C composite carbon nanofiber interlayer for efficient trapping and conversion of polysulfides in lithium-sulfur batteries. Journal of Alloys and Compounds, 2020, 847, 156443.	2.8	31
161	Polystyrene/Sn-Pb alloy blends. I. Dynamic rheological behavior. Journal of Applied Polymer Science, 2002, 86, 3166-3172.	1.3	30
162	Improvement in electrochemical properties of nano-tin-polyaniline lithium-ion composite anodes by control of electrode microstructure. Journal of Power Sources, 2002, 109, 136-141.	4.0	30

#	Article	IF	CITATIONS
163	Transport Properties of Solid Polymer Electrolytes Prepared from Oligomeric Fluorosulfonimide Lithium Salts Dissolved in High Molecular Weight Poly(ethylene oxide). Journal of Physical Chemistry B, 2006, 110, 23130-23135.	1.2	30
164	Cobalt doping of tin disulfide/reduced graphene oxide nanocomposites for enhanced pseudocapacitive sodium-ion storage. Communications Chemistry, 2018, 1, .	2.0	30
165	Centrifugally spun porous carbon microfibers as interlayer for Li–S batteries. Journal of Materials Science, 2020, 55, 3538-3548.	1.7	30
166	Flexible, transparent and tough silver nanowire/nanocellulose electrodes for flexible touch screen panels. Carbohydrate Polymers, 2021, 273, 118539.	5.1	30
167	A new polymer composite thermistor having double PTC transitions. Journal of Applied Polymer Science, 2000, 78, 424-429.	1.3	29
168	Lithium-substituted sodium layered transition metal oxide fibers as cathodes for sodium-ion batteries. Energy Storage Materials, 2015, 1, 74-81.	9.5	29
169	Rational design of meso-/micro-pores for enhancing ion transportation in highly-porous carbon nanofibers used as electrode for supercapacitors. Applied Surface Science, 2021, 545, 148933.	3.1	29
170	Hollow-in-Hollow Carbon Spheres for Lithium-ion Batteries with Superior Capacity and Cyclic Performance. Electrochimica Acta, 2015, 186, 436-441.	2.6	28
171	Skin pressure profiles and variations with body postural changes beneath medical elastic compression stockings. International Journal of Dermatology, 2007, 46, 514-523.	0.5	27
172	Electrodeposition of platinum nanoparticles onto carbon nanofibers for electrocatalytic oxidation of methanol. Materials Letters, 2009, 63, 2115-2118.	1.3	27
173	Preparation of SiO ₂ /PS superhydrophobic fibers with bionic controllable micro–nano structure via centrifugal spinning. RSC Advances, 2017, 7, 11041-11048.	1.7	27
174	Highly mesoporous C nanofibers with graphitized pore walls fabricated via ZnCo ₂ O ₄ -induced activating-catalyzed-graphitization for long-lifespan lithium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 21679-21687.	5.2	27
175	Gamma(É£)-MnO2/rGO Fibered Cathode Fabrication from Wet Spinning and Dip Coating Techniques for Cable-Shaped Zn-Ion Batteries. Advanced Fiber Materials, 2022, 4, 457-474.	7.9	27
176	Nanoâ€scale <scp>BN</scp> interface for ultraâ€stable and wide temperature range tolerable Zn anode. EcoMat, 2022, 4, .	6.8	27
177	Highly smooth, robust, degradable and cost-effective modified lignin-nanocellulose green composite substrates for flexible and green electronics. Composites Part B: Engineering, 2022, 236, 109803.	5.9	27
178	NiCu Alloy Nanoparticle-Loaded Carbon Nanofibers for Phenolic Biosensor Applications. Sensors, 2015, 15, 29419-29433.	2.1	26
179	Centrifugally-spun carbon microfibers and porous carbon microfibers as anode materials for sodium-ion batteries. Journal of Power Sources, 2016, 327, 333-339.	4.0	26
180	Surface processing and ageing behavior of silk fabrics treated with atmospheric-pressure plasma for pigment-based ink-jet printing. Applied Surface Science, 2018, 434, 198-203.	3.1	26

#	Article	IF	CITATIONS
181	Centrifugally Spun SnO ₂ Microfibers Composed of Interconnected Nanoparticles as the Anode in Sodium″on Batteries. ChemElectroChem, 2015, 2, 1947-1956.	1.7	25
182	High performance carbon nanotube – polymer nanofiber hybrid fabrics. Nanoscale, 2015, 7, 16744-16754.	2.8	24
183	Interconnected cathode-electrolyte double-layer enabling continuous Li-ion conduction throughout solid-state Li-S battery. Energy Storage Materials, 2022, 44, 136-144.	9.5	24
184	Role of polymer–salt–solvent interactions in the electrospinning of polyacrylonitrile/iron acetylacetonate. Journal of Applied Polymer Science, 2008, 109, 2935-2941.	1.3	23
185	Electrocatalytic properties of Pt/carbon composite nanofibers. Electrochimica Acta, 2009, 54, 7042-7047.	2.6	23
186	Tin nanoparticles embedded in ordered mesoporous carbon as high-performance anode for sodium-ion batteries. Journal of Solid State Electrochemistry, 2017, 21, 1385-1395.	1.2	23
187	Highly Transparent, Thermally Stable, and Mechanically Robust Hybrid Cellulose-Nanofiber/Polymer Substrates for the Electrodes of Flexible Solar Cells. ACS Applied Energy Materials, 2020, 3, 785-793.	2.5	23
188	Disintegrable, transparent and mechanically robust high-performance antimony tin oxide/nanocellulose/polyvinyl alcohol thermal insulation films. Carbohydrate Polymers, 2021, 266, 118175.	5.1	23
189	Polyacrylonitrile Nanofiber-Reinforced Flexible Single-Ion Conducting Polymer Electrolyte for High-Performance, Room-Temperature All-Solid-State Li-Metal Batteries. Advanced Fiber Materials, 2022, 4, 532-546.	7.9	23
190	Attenuation of Aluminum Current Collector Corrosion in LiTFSI Electrolytes Using Fumed Silica Nanoparticles. Electrochemical and Solid-State Letters, 2004, 7, A228.	2.2	22
191	Carbonâ€Coated Magnesium Ferrite Nanofibers for Lithiumâ€Ion Battery Anodes with Enhanced Cycling Performance. Energy Technology, 2017, 5, 1364-1372.	1.8	22
192	Si/TiO2/Ti2O3 composite carbon nanofiber by one-step heat treatment with highly enhanced ion/electron diffusion rates for next-generation lithium-ion batteries. Electrochimica Acta, 2020, 337, 135789.	2.6	22
193	Optimized preparation of LiNi0.6Mn0.2Co0.2O2 with single crystal morphology cathode material for lithium-ion batteries. Ionics, 2020, 26, 2689-2698.	1.2	21
194	A novel low-melting-point alloy-loaded polymer composite. I. Effect of processing temperature on the electrical properties and morphology. Journal of Applied Polymer Science, 2000, 77, 1044-1050.	1.3	20
195	Single-ion conductors for lithium batteries via silica surface modification. Journal of Power Sources, 2008, 177, 561-565.	4.0	20
196	Synthesis and electrocatalysis of 1-aminopyrene-functionalized carbon nanofiber-supported platinum–ruthenium nanoparticles. Journal of Power Sources, 2010, 195, 5520-5526.	4.0	20
197	A facile approach to fabricate porous nylon 6 nanofibers using silica nanotemplate. Journal of Applied Polymer Science, 2011, 120, 425-433.	1.3	20
198	Graphene-coated pyrogenic carbon as an anode material for lithium battery. Chemical Engineering Journal, 2013, 229, 399-403.	6.6	20

#	Article	IF	CITATIONS
199	SiO ₂ -confined silicon/carbon nanofiber composites as an anode for lithium-ion batteries. RSC Advances, 2015, 5, 34744-34751.	1.7	20
200	Nanoscale Porous Lithium Titanate Anode for Superior High Temperature Performance. ACS Applied Materials & Interfaces, 2016, 8, 12127-12133.	4.0	20
201	Porous Organic-Inorganic Hybrid Electrolytes for High-Temperature Proton Exchange Membrane Fuel Cells. Journal of the Electrochemical Society, 2007, 154, B322.	1.3	19
202	Chemical protection performance of polystyrene sulfonic acid-filled polypropylene nonwoven membranes. Journal of Membrane Science, 2010, 362, 137-142.	4.1	19
203	Durable hydrophobic cotton surfaces prepared using silica nanoparticles and multifunctional silanes. Journal of the Textile Institute, 2012, 103, 385-393.	1.0	19
204	The effects of reheating process on the electrochemical properties of single crystal LiNi0.6Mn0.2Co0.2O2. Solid State Ionics, 2020, 345, 115200.	1.3	19
205	Ionic Transport and Interfacial Stability of Sulfonate-Modified Fumed Silicas as Nanocomposite Electrolytes. Journal of the Electrochemical Society, 2005, 152, A2413.	1.3	18
206	Synthesis and Electrocatalysis of Carbon Nanofiber-Supported Platinum by 1-AP Functionalization and Polyol Processing Technique. Journal of Physical Chemistry C, 2010, 114, 3791-3797.	1.5	18
207	Excimer Ultraviolet-Irradiated Carbon Nanofibers as Advanced Anodes for Long Cycle Life Lithium-Ion Batteries. Small, 2016, 12, 5269-5275.	5.2	18
208	Rationally designed carbon coated ZnSnS3 nano cubes as high-performance anode for advanced sodium-ion batteries. Electrochimica Acta, 2018, 292, 646-654.	2.6	18
209	Plasma-Electrospinning Hybrid Process and Plasma Pretreatment to Improve Adhesive Properties of Nanofibers on Fabric Surface. Plasma Chemistry and Plasma Processing, 2012, 32, 275-291.	1.1	17
210	Carbon-coated CoS@rGO anode material with enhanced cyclic stability for sodium storage. Materials Letters, 2018, 233, 158-161.	1.3	17
211	Carbon-enhanced centrifugally-spun SnSb/carbon microfiber composite as advanced anode material for sodium-ion battery. Journal of Colloid and Interface Science, 2019, 536, 655-663.	5.0	17
212	Highly Foldable, Super-Sensitive, and Transparent Nanocellulose/Ceramic/Polymer Cover Windows for Flexible OLED Displays. ACS Applied Materials & Interfaces, 2022, 14, 16658-16668.	4.0	17
213	Split Sn-Cu Alloys on Carbon Nanofibers by One-step Heat Treatment for Long-Lifespan Lithium-Ion Batteries. Electrochimica Acta, 2017, 225, 350-357.	2.6	16
214	Channelized carbon nanofiber with uniform-dispersed GeO2 as anode for long-lifespan lithium-ion batteries. Journal of Alloys and Compounds, 2017, 729, 313-322.	2.8	16
215	Hybrid Carbon Nanotube Fabrics with Sacrificial Nanofibers for Flexible High Performance Lithium-Ion Battery Anodes. Journal of the Electrochemical Society, 2019, 166, A473-A479.	1.3	16
216	Electrospun carbon nanofiber-supported Pt–Pd alloy composites for oxygen reduction. Journal of Materials Research, 2010, 25, 1329-1335.	1.2	15

#	Article	IF	CITATIONS
217	Synthesis and properties of Li2MnO3-based cathode materials for lithium-ion batteries. Journal of Alloys and Compounds, 2013, 577, 560-563.	2.8	15
218	Preparation of a graphene-loaded carbon nanofiber composite with enhanced graphitization and conductivity for biosensing applications. RSC Advances, 2015, 5, 30602-30609.	1.7	15
219	Fabrication and electrochemical behavior study of nano-fibrous sodium titanate composite. Materials Letters, 2017, 188, 176-179.	1.3	15
220	Advanced ZnSnS ₃ @rGO Anode Material for Superior Sodiumâ€ion and Lithiumâ€ion Storage with Ultralong Cycle Life. ChemElectroChem, 2019, 6, 1183-1191.	1.7	15
221	Structures and properties of SnO2 nanofibers derived from two different polymer intermediates. Journal of Materials Science, 2013, 48, 3378-3385.	1.7	14
222	GeO ultra-dispersed in microporous carbon nanofibers: a binder-free anode for high performance lithium-ion battery. Electrochimica Acta, 2017, 246, 981-989.	2.6	14
223	Centrifugal Spinning—High Rate Production of Nanofibers. , 2019, , 321-338.		14
224	Hexanedioic acid mediated <i>in situ</i> functionalization of interconnected graphitic 3D carbon nanofibers as Pt support for trifunctional electrocatalysts. Sustainable Energy and Fuels, 2020, 4, 2808-2822.	2.5	13
225	Electrospun Nanofibers Enabled Advanced Lithium–Sulfur Batteries. Accounts of Materials Research, 2022, 3, 149-160.	5.9	13
226	Composite doped emeraldine–polyethylene oxide-bonded lithium-ion nano-tin anodes with electronic–ionic mixed conduction. Solid State Ionics, 2002, 150, 383-389.	1.3	12
227	Iron/manganese oxide-decorated GO-regulated highly porous polyacrylonitrile hollow fiber membrane and its excellent methylene blue-removing performance. Journal of Membrane Science, 2020, 607, 118180.	4.1	12
228	The influence of low-melting-point alloy on the rheological properties of a polystyrene melt. Journal of Materials Science, 2000, 35, 4573-4581.	1.7	11
229	Polystyrene/Sn-Pb alloy blends. II. Effect of alloy particle surface treatment on dynamic rheological behavior. Journal of Applied Polymer Science, 2002, 86, 3173-3179.	1.3	11
230	Structure–property relationships of polymer-filled nonwoven membranes for chemical protection applications. Journal of Membrane Science, 2010, 361, 63-70.	4.1	11
231	Electrocatalytic interaction of nano-engineered palladium on carbon nanofibers with hydrogen peroxide and β-NADH. Journal of Solid State Electrochemistry, 2011, 15, 1287-1294.	1.2	11
232	LiF/Fe/C nanofibres as a high-capacity cathode material for Li-ion batteries. Journal Physics D: Applied Physics, 2012, 45, 395301.	1.3	11
233	Chemically interconnected ternary AgNP/polypyrrole/functionalized buckypaper composites as high-energy-density supercapacitor electrodes. Chemical Physics Letters, 2020, 739, 136957.	1.2	11
234	Novel low melting point alloy-loaded polymer composite. II. Resistivity-temperature behavior. Journal of Applied Polymer Science, 2000, 77, 756-763.	1.3	10

#	Article	IF	CITATIONS
235	Improving low-temperature performance of Li-alloy anodes by optimization of the electrolyte–electrode interface. Journal of Power Sources, 2003, 114, 121-126.	4.0	10
236	A novel polymer composite with double positiveâ€ŧemperature oefficient transitions: effect of filler–matrix interface on the resistivity–temperature behavior. Polymer International, 2008, 57, 770-777.	1.6	10
237	Hydroentangling: A Novel Approach to Highâ€5peed Fabrication of Carbon Nanotube Membranes. Advanced Materials, 2008, 20, 4140-4144.	11.1	10
238	Electrochemical Performance of Carbon Nanofibers Containing an Enhanced Dispersion of Silicon Nanoparticles for Lithium-Ion Batteries by Employing Surfactants. ECS Electrochemistry Letters, 2012, 1, A31-A33.	1.9	10
239	Multifunctional and durable nanofiberâ€fabricâ€layered composite for protective application. Journal of Applied Polymer Science, 2013, 128, 1219-1226.	1.3	10
240	Study on an improved bio-electrode made with glucose oxidase immobilized mesoporous carbon in biofuel cells. RSC Advances, 2016, 6, 24451-24457.	1.7	10
241	Study of poly(N-isopropylacrylamide) grafted cotton fabrics initiated by atmospheric pressure plasma. Applied Surface Science, 2018, 453, 182-191.	3.1	10
242	Highly Thermally Stable, Green Solvent Disintegrable, and Recyclable Polymer Substrates for Flexible Electronics. Macromolecular Rapid Communications, 2020, 41, 2000292.	2.0	10
243	Oriented PAN/PVDF/PAN laminated nanofiber separator for lithium-ion batteries. Textile Reseach Journal, 2022, 92, 2635-2642.	1.1	10
244	Root-whisker structured 3D CNTs-CNFs network based on coaxial electrospinning: A free-standing anode in lithium-ion batteries. Journal of Alloys and Compounds, 2021, 863, 158481.	2.8	10
245	Porous carbon nanosheets derived from expanded graphite for supercapacitors and sodium-ion batteries. Journal of Materials Science, 2020, 55, 16323-16333.	1.7	9
246	Fe2O3-encapsulated and Fe-Nx-containing hierarchical porous carbon spheres as efficient electrocatalyst for oxygen reduction reaction. International Journal of Hydrogen Energy, 2022, 47, 2103-2113.	3.8	9
247	Highly Soluble and Stable, High Release Rate Nanocellulose Codrug Delivery System of Curcumin and AuNPs for Dual Chemo-Photothermal Therapy. Biomacromolecules, 2022, 23, 960-971.	2.6	9
248	Comparing the structures and sodium storage properties of centrifugally spun SnO2 microfiber anodes with/without chemical vapor deposition. Journal of Materials Science, 2016, 51, 4549-4558.	1.7	8
249	Quantification on Growing Mass of Solid Electrolyte Interphase and Deposited Mn(II) on the Silicon Anode of LiMn2O4 Full Lithium-Ion Cells. ACS Applied Materials & Interfaces, 2019, 11, 27839-27845.	4.0	8
250	Nanocomposite Electrolytes Using Single-Ion Conducting Fumed Silica. Electrochemical and Solid-State Letters, 2004, 7, A361.	2.2	7
251	Plasma-Assisted Preparation of High-Performance Chitosan Nanofibers/Gauze Composite Bandages. International Journal of Polymeric Materials and Polymeric Biomaterials, 2015, 64, 709-717.	1.8	7
252	The electrochemical performance of SnSb/C nanofibers with different morphologies and underlying mechanism. Journal of Materials Research, 2017, 32, 1184-1193.	1.2	7

#	Article	IF	CITATIONS
253	Physical characterization of electrospun nanofibers. , 2017, , 207-238.		7
254	PEI/GO-codecorated poly(acrylic acid-co-hydroxyethyl methacrylate) fiber as a carrier to support iron ions and its catalytic performance for methylene blue decolorization. Journal of Macromolecular Science - Pure and Applied Chemistry, 2020, 57, 531-543.	1.2	7
255	ELECTRICAL PROPERTIES OF POLYMER/LOW-MELTING-POINT ALLOY BINARY SYSTEMS. Polymer-Plastics Technology and Engineering, 2000, 39, 829-833.	1.9	6
256	Synthesis and characterization of polymerâ€filled nonwoven membranes. Journal of Applied Polymer Science, 2011, 119, 2568-2575.	1.3	5
257	Atmospheric plasma application to improve adhesion of electrospun nanofibers onto protective fabric. Journal of Adhesion Science and Technology, 2013, 27, 924-938.	1.4	5
258	Chemical characterization of electrospun nanofibers. , 2017, , 181-206.		5
259	Conductive textiles. , 2018, , 305-334.		5
260	Fabrication, structure and supercapacitance of flexible porous carbon nanobelt webs with enhanced inter-fiber connection. Applied Surface Science, 2021, 543, 148783.	3.1	5
261	Selective permeation of crossâ€linked polyelectrolyte and polyelectrolyteâ€filled nonwoven membranes. Journal of Applied Polymer Science, 2012, 123, 227-233.	1.3	4
262	Li intercalation in nonwoven carbon nanotube/carbon fiber felt electrode: Influence of carbon fiber type. Diamond and Related Materials, 2021, 115, 108353.	1.8	4
263	Designing Energy-Storage Devices from Textile Materials. Advanced Materials Research, 0, 441, 231-234.	0.3	3
264	Nanofiber-Based Membrane Separators for Lithium-ion Batteries. Materials Research Society Symposia Proceedings, 2015, 1718, 157-161.	0.1	3
265	Li ₂ MnSiO ₄ /Carbon Composite Nanofibers as a High-Capacity Cathode Material for Li-Ion Batteries. Soft Nanoscience Letters, 2012, 02, 54-57.	0.8	3
266	Multifunctional Three-Dimensional Bicontinuous Heterofibrous Scaffold for Kinetically Accelerated Polysulfide Trapping and Conversion in Lithium–Sulfur Batteries. ACS Applied Energy Materials, 2021, 4, 14447-14457.	2.5	3
267	Electrospun Nanofibers for Design and Fabrication of Electrocatalysts and Electrolyte Membranes for Fuel cells. Nanostructure Science and Technology, 2014, , 41-67.	0.1	2
268	High-performance Sn/Carbon Composite Anodes Derived from Sn(II) Acetate/Polyacrylonitrile Precursors by Electrospinning Technology. Current Organic Chemistry, 2013, 17, 1448-1454.	0.9	2
269	Novel Atmospheric Plasma Enhanced Silk Fibroin Nanofiber/Gauze Composite Wound Dressings. Journal of Fiber Bioengineering and Informatics, 2012, 5, 227-242.	0.2	2
270	Effect of platinum salt concentration on the electrospinning of polyacrylonitrile/platinum acetylacetonate solution. Journal of Applied Polymer Science, 2010, 116, 895-901.	1.3	1

#	Article	IF	CITATIONS
271	AgNP/crystalline PANI/EBPâ€compositeâ€based supercapacitor electrode with internal chemical interactions. Journal of Applied Polymer Science, 2019, 136, 48164.	1.3	1
272	Co3O4/Carbon Composite Nanofibers for Use as Anode Material in Advanced Lithium-Ion Batteries. ACS Symposium Series, 2013, , 55-66.	0.5	0
273	Melt-spun modified poly (styrene-co-butyl acrylate) fiber as a carrier to support manganese oxide and its application in dye wastewater decolorization. Environmental Science and Pollution Research, 2020, 27, 28209-28221.	2.7	0
274	Functional Nanofibers for Energy Storage. , 2015, , 513-547.		0
275	Functional Nanofibers for Energy Storage. , 2015, , 1-28.		0
276	Polyacrylonitrile homogeneous blend hollow fiber membrane with stable structure as a substrate to support Fe/Mn oxide and its enhanced capability to purify dye wastewater. Journal of Polymer Engineering, 2020, 40, 469-479.	0.6	0