Francis C Szoka Jr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5380258/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanism of DNA Release from Cationic Liposome/DNA Complexes Used in Cell Transfectionâ€,‡. Biochemistry, 1996, 35, 5616-5623.	2.5	1,125
2	<i>In Vitro</i> Gene Delivery by Degraded Polyamidoamine Dendrimers. Bioconjugate Chemistry, 1996, 7, 703-714.	3.6	818
3	Lipid-based Nanoparticles for Nucleic Acid Delivery. Pharmaceutical Research, 2007, 24, 438-449.	3.5	571
4	GALA: a designed synthetic pH-responsive amphipathic peptide with applications in drug and gene delivery. Advanced Drug Delivery Reviews, 2004, 56, 967-985.	13.7	518
5	Cancer nanomedicines: So many papers and so few drugs!. Advanced Drug Delivery Reviews, 2013, 65, 80-88.	13.7	472
6	Anticancer Therapeutics: Targeting Macromolecules and Nanocarriers to Hyaluronan or CD44, a Hyaluronan Receptor. Molecular Pharmaceutics, 2008, 5, 474-486.	4.6	400
7	BCAA catabolism in brown fat controls energy homeostasis through SLC25A44. Nature, 2019, 572, 614-619.	27.8	332
8	Delivery of plasmid DNA into mammalian cell lines using pH-sensitive liposomes: comparison with cationic liposomes. Pharmaceutical Research, 1992, 09, 1235-1242.	3.5	313
9	Polymer-stabilized Cas9 nanoparticles and modified repair templates increase genome editing efficiency. Nature Biotechnology, 2020, 38, 44-49.	17.5	198
10	The neonatal Fc receptor, FcRn, as a target for drug delivery and therapy. Advanced Drug Delivery Reviews, 2015, 91, 109-124.	13.7	177
11	Efficiency of cytoplasmic delivery by pH-sensitive liposomes to cells in culture. Pharmaceutical Research, 1990, 07, 824-834.	3.5	172
12	Distribution in brain of liposomes after convection enhanced delivery; modulation by particle charge, particle diameter, and presence of steric coating. Brain Research, 2005, 1035, 139-153.	2.2	165
13	The effect of polymer backbone chemistry on the induction of the accelerated blood clearance in polymer modified liposomes. Journal of Controlled Release, 2015, 213, 1-9.	9.9	148
14	Macrophage-based cell therapies: The long and winding road. Journal of Controlled Release, 2016, 240, 527-540.	9.9	145
15	Low-pH-sensitive poly(ethylene glycol) (PEG)-stabilized plasmid nanolipoparticles: effects of PEG chain length, lipid composition and assembly conditions on gene delivery. Journal of Gene Medicine, 2005, 7, 67-79.	2.8	131
16	Designer lipids for drug delivery: From heads to tails. Journal of Controlled Release, 2014, 190, 274-287.	9.9	129
17	Synthesis and Characterization of Long Chain Alkyl Acyl Carnitine Esters. Potentially Biodegradable Cationic Lipids for Use in Gene Delivery. Journal of Medicinal Chemistry, 1998, 41, 2207-2215.	6.4	125
18	Barriers to carrier mediated drug and gene delivery to brain tumors. Journal of Controlled Release, 2006, 110, 236-259.	9.9	110

FRANCIS C SZOKA JR

#	Article	IF	CITATIONS
19	Sterol-Modified Phospholipids: Cholesterol and Phospholipid Chimeras with Improved Biomembrane Properties. Journal of the American Chemical Society, 2008, 130, 15702-15712.	13.7	107
20	Digesting a Path Forward: The Utility of Collagenase Tumor Treatment for Improved Drug Delivery. Molecular Pharmaceutics, 2018, 15, 2069-2083.	4.6	94
21	Disterolphospholipids: Nonexchangeable Lipids and Their Application to Liposomal Drug Delivery. Angewandte Chemie - International Edition, 2009, 48, 4146-4149.	13.8	92
22	Periplasmic production via the pET expression system of soluble, bioactive human growth hormone. Protein Expression and Purification, 2013, 87, 129-135.	1.3	78
23	pH-Sensitive Liposomes. Journal of Liposome Research, 1994, 4, 361-395.	3.3	77
24	Improving the distribution of Doxil® in the tumor matrix by depletion of tumor hyaluronan. Journal of Controlled Release, 2014, 191, 105-114.	9.9	66
25	Antitumor effect of folate-targeted liposomal doxorubicin in KB tumor-bearing mice after intravenous administration. Journal of Drug Targeting, 2011, 19, 14-24.	4.4	58
26	Antibody Response to Polyhistidine-Tagged Peptide and Protein Antigens Attached to Liposomes via Lipid-Linked Nitrilotriacetic Acid in Mice. Vaccine Journal, 2011, 18, 289-297.	3.1	52
27	Anti-tumor activity of liposome encapsulated fluoroorotic acid as a single agent and in combination with liposome irinotecan. Journal of Controlled Release, 2011, 153, 288-296.	9.9	50
28	Surface aggregation and membrane penetration by peptides: relation to pore formation and fusion. Molecular Membrane Biology, 1999, 16, 95-101.	2.0	49
29	How are Nucleic Acids Released in Cells from Cationic Lipid-Nucleic Acid Complexes?. Journal of Liposome Research, 1996, 6, 567-587.	3.3	44
30	Clinical developments of chemotherapeutic nanomedicines: polymers and liposomes for delivery of camptothecins and platinum (II) drugs. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2013, 5, 130-138.	6.1	41
31	Zwitterionic sulfobetaine lipids that form vesicles with salt-dependent thermotropic properties. Chemical Communications, 2011, 47, 12613.	4.1	39
32	Incorporation of LPS in Liposomes Diminishes Its Ability to Induce Tumoricidal Activity and Tumor Necrosis Factor Secretion in Murine Macrophages. Journal of Leukocyte Biology, 1988, 43, 436-444.	3.3	38
33	Amino acid side-chain contributions to free energy of transfer of tripeptides from water to octanol. Pharmaceutical Research, 1992, 09, 504-514.	3.5	37
34	Phage display selection of a peptide DNase II inhibitor that enhances gene delivery. Journal of Gene Medicine, 2001, 3, 101-108.	2.8	37
35	Amphotericin B Formulated in Liposomes and Lipid Based Systems: A Review. Journal of Liposome Research, 1993, 3, 363-375.	3.3	35
36	Fusion of a Short Peptide that Binds Immunoglobulin G to a Recombinant Protein Substantially Increases Its Plasma Half-Life in Mice. PLoS ONE, 2014, 9, e102566.	2.5	35

FRANCIS C SZOKA JR

#	Article	IF	CITATIONS
37	Role of lipid structure in the humoral immune response in mice to covalent lipid–peptides from the membrane proximal region of HIV-1 gp41. Vaccine, 2009, 27, 4672-4683.	3.8	34
38	Matrix modification for enhancing the transport properties of the human cartilage endplate to improve disc nutrition. PLoS ONE, 2019, 14, e0215218.	2.5	34
39	Encapsulation, controlled release, and antitumor efficacy of cisplatin delivered in liposomes composed of sterol-modified phospholipids. European Journal of Pharmaceutical Sciences, 2017, 103, 85-93.	4.0	33
40	Chemotherapeutic Evaluation of a Synthetic Tubulysin Analogue–Dendrimer Conjugate in C26 Tumor Bearing Mice. ChemMedChem, 2011, 6, 49-53.	3.2	31
41	Phosphataseâ€Triggered Fusogenic Liposomes for Cytoplasmic Delivery of Cellâ€Impermeable Compounds. Angewandte Chemie - International Edition, 2012, 51, 9047-9051.	13.8	30
42	Development of a flow-through USP 4 apparatus drug release assay for the evaluation of amphotericin B liposome. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 134, 107-116.	4.3	30
43	Molecular motors as drug delivery vehicles. Drug Discovery Today: Technologies, 2005, 2, 111-118.	4.0	27
44	Cationic Liposomes as an Oligonucleotide Carrier: Mechanism of Action. Journal of Liposome Research, 1997, 7, 31-49.	3.3	25
45	Lecithin: Cholesterol acyltransferase activation by synthetic amphipathic peptides. Proteins: Structure, Function and Bioinformatics, 1988, 3, 187-198.	2.6	20
46	Synthesis and characterization of betaine-like diacyl lipids: zwitterionic lipids with the cationic amine at the bilayer interface. Chemistry and Physics of Lipids, 2012, 165, 252-259.	3.2	20
47	Biodistribution and <i>In Vivo</i> Antileishmanial Activity of 1,2-Distigmasterylhemisuccinoyl- <i>sn</i> -Glycero-3-Phosphocholine Liposome-Intercalated Amphotericin B. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	19
48	Rational Design of Membrane Proximal External Region Lipopeptides Containing Chemical Modifications for HIV-1 Vaccination. Vaccine Journal, 2013, 20, 39-45.	3.1	18
49	Toroid formation in charge neutralized flexible or semi-flexible biopolymers: potential pathway for assembly of DNA carriers. Journal of Gene Medicine, 2005, 7, 334-342.	2.8	13
50	Chemically Modified Peptides Based on the Membrane-Proximal External Region of the HIV-1 Envelope Induce High-Titer, Epitope-Specific Nonneutralizing Antibodies in Rabbits. Vaccine Journal, 2014, 21, 1086-1093.	3.1	13
51	All â€ŧrans retinoic acid potentiates the antibody response in mice to a lipopeptide antigen adjuvanted with liposomal lipid A. Immunology and Cell Biology, 2009, 87, 630-633.	2.3	12
52	Convection and Retro-Convection Enhanced Delivery: Some Theoretical Considerations Related to Drug Targeting. Pharmaceutical Research, 2011, 28, 472-479.	3.5	12
53	A robust and quantitative method for tracking liposome contents after intravenous administration. Journal of Controlled Release, 2014, 176, 86-93.	9.9	11
54	Sulfated quaternary amine lipids: a new class of inverse charge zwitterlipids. Chemical Communications, 2014, 50, 9109-9111.	4.1	11

FRANCIS C SZOKA JR

#	Article	IF	CITATIONS
55	Sterol-modified PEG lipids: alteration of the bilayer anchoring moiety has an unexpected effect on liposome circulation. Chemical Communications, 2018, 54, 11949-11952.	4.1	11
56	Antiviral Activity and Pharmacokinetics of Liposome-Encapsulated Phosphonoformate in Rauscher Murine Leukemia Virus-Infected Mice. Journal of Liposome Research, 1992, 2, 67-92.	3.3	8
57	Constrained Versus Free Cholesterol in DPPC Membranes: A Comparison of Chain Ordering Ability Using Deuterium NMR. Langmuir, 2017, 33, 14405-14413.	3.5	7
58	Many are probed, but few are chosen. Nature Biotechnology, 1997, 15, 509-509.	17.5	6
59	Remembrance: Demetrios P. Papahadjopoulos August 24, 1934–September 21, 1998. Journal of Liposome Research, 1998, 8, vii-xi.	3.3	6
60	HIV TAT Protein Transduction Domain Mediated Cell Binding and Intracellular Delivery of Nanoparticles. Journal of Dispersion Science and Technology, 2003, 24, 465-473.	2.4	6
61	Perturbation of solute transport at a liquid–liquid interface by polyethylene glycol (PEG): implications for PEG-induced biomembrane fusion. Physical Chemistry Chemical Physics, 2011, 13, 5346.	2.8	5
62	Co-localization of fluorescent labeled lipid nanoparticles with specifically tagged subcellular compartments by single particle tracking at low nanoparticle to cell ratios. Journal of Drug Targeting, 2016, 24, 857-864.	4.4	5
63	Clodronate Improves Survival of Transplanted Hoxb8 Myeloid Progenitors with Constitutively Active GMCSFR in Immunocompetent Mice. Molecular Therapy - Methods and Clinical Development, 2017, 7, 60-73.	4.1	5
64	Biochemical, Morphological, and Functional Analyses of a Cyclic Peptide, Phospholipid, and DNA Ternary Complex used for Gene Delivery. Journal of Liposome Research, 1998, 8, 347-366.	3.3	4
65	Commentary: Rantosomes and Ravosomes. Journal of Liposome Research, 1998, 8, vii-ix.	3.3	3
66	Cryogenic Transmission Electron Microscopy (Cryo-TEM) Reveals Morphological Changes of Liposomal Doxorubicin during In Vitro Release. Microscopy and Microanalysis, 2017, 23, 1216-1217.	0.4	1
67	Ferrozine-Based Iron Quantification of Iron Overloaded Mice: a Simple, Robust Method for the Assessment of Iron Chelation Therapies. Blood, 2015, 126, 2054-2054.	1.4	Ο