
Angelika Gründling

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5380171/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	c-di-AMP Is a New Second Messenger in Staphylococcus aureus with a Role in Controlling Cell Size and Envelope Stress. PLoS Pathogens, 2011, 7, e1002217.	2.1	398
2	Cyclic di-AMP: another second messenger enters the fray. Nature Reviews Microbiology, 2013, 11, 513-524.	13.6	338
3	Lipoteichoic Acid Synthesis and Function in Gram-Positive Bacteria. Annual Review of Microbiology, 2014, 68, 81-100.	2.9	335
4	Synthesis of glycerol phosphate lipoteichoic acid in Staphylococcus aureus. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 8478-8483.	3.3	269
5	Systematic identification of conserved bacterial c-di-AMP receptor proteins. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9084-9089.	3.3	242
6	Listeria monocytogenes regulates flagellar motility gene expression through MogR, a transcriptional repressor required for virulence. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 12318-12323.	3.3	201
7	ppGpp negatively impacts ribosome assembly affecting growth and antimicrobial tolerance in Gram-positive bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1710-9.	3.3	177
8	Genes Required for Glycolipid Synthesis and Lipoteichoic Acid Anchoring in Staphylococcus aureus. Journal of Bacteriology, 2007, 189, 2521-2530.	1.0	173
9	Location, synthesis and function of glycolipids and polyglycerolphosphate lipoteichoic acid in Gram-positive bacteria of the phylum Firmicutes. FEMS Microbiology Letters, 2011, 319, 97-105.	0.7	153
10	Bacterial Signal Transduction by Cyclic Di-GMP and Other Nucleotide Second Messengers. Journal of Bacteriology, 2016, 198, 15-26.	1.0	127
11	Requirement of the Listeria monocytogenes Broad-Range Phospholipase PC-PLC during Infection of Human Epithelial Cells. Journal of Bacteriology, 2003, 185, 6295-6307.	1.0	119
12	Cross-talk between Two Nucleotide-signaling Pathways in Staphylococcus aureus. Journal of Biological Chemistry, 2015, 290, 5826-5839.	1.6	113
13	Staphylococcus aureus Mutants with Increased Lysostaphin Resistance. Journal of Bacteriology, 2006, 188, 6286-6297.	1.0	97
14	Binding of Cyclic Di-AMP to the Staphylococcus aureus Sensor Kinase KdpD Occurs via the Universal Stress Protein Domain and Downregulates the Expression of the Kdp Potassium Transporter. Journal of Bacteriology, 2016, 198, 98-110.	1.0	97
15	Structure-based mechanism of lipoteichoic acid synthesis by <i>Staphylococcus aureus</i> LtaS. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1584-1589.	3.3	93
16	Revised mechanism of d-alanine incorporation into cell wall polymers in Gram-positive bacteria. Microbiology (United Kingdom), 2013, 159, 1868-1877.	0.7	89
17	Twoâ€enzyme systems for glycolipid and polyglycerolphosphate lipoteichoic acid synthesis in <i>Listeria monocytogenes</i> . Molecular Microbiology, 2009, 74, 299-314.	1.2	87
18	New Insights into the Cyclic Di-adenosine Monophosphate (c-di-AMP) Degradation Pathway and the Requirement of the Cyclic Dinucleotide for Acid Stress Resistance in Staphylococcus aureus. Journal of Biological Chemistry, 2016, 291, 26970-26986.	1.6	87

#	Article	IF	CITATIONS
19	The second messenger c-di-AMP inhibits the osmolyte uptake system OpuC in <i>Staphylococcus aureus</i> . Science Signaling, 2016, 9, ra81.	1.6	87
20	Cyclic di-adenosine monophosphate (c-di-AMP) is required for osmotic regulation in Staphylococcus aureus but dispensable for viability in anaerobic conditions. Journal of Biological Chemistry, 2018, 293, 3180-3200.	1.6	84
21	β-Lactam Resistance in Methicillin-Resistant Staphylococcus aureus USA300 Is Increased by Inactivation of the ClpXP Protease. Antimicrobial Agents and Chemotherapy, 2014, 58, 4593-4603.	1.4	82
22	Phage resistance at the cost of virulence: Listeria monocytogenes serovar 4b requires galactosylated teichoic acids for InIB-mediated invasion. PLoS Pathogens, 2019, 15, e1008032.	2.1	78
23	Enzymatic activities and functional interdependencies of Bacillus subtilis lipoteichoic acid synthesis enzymes. Molecular Microbiology, 2011, 79, 566-583.	1.2	64
24	Differential localization of <scp>LTA</scp> synthesis proteins and their interaction with the cell division machinery in <i><scp>S</scp>taphylococcus aureus</i> . Molecular Microbiology, 2014, 92, 273-286.	1.2	55
25	Discovery of genes required for lipoteichoic acid glycosylation predicts two distinct mechanisms for wall teichoic acid glycosylation. Journal of Biological Chemistry, 2018, 293, 3293-3306.	1.6	53
26	<i>In Vitro</i> Analysis of the <i>Staphylococcus aureus</i> Lipoteichoic Acid Synthase Enzyme Using Fluorescently Labeled Lipids. Journal of Bacteriology, 2010, 192, 5341-5349.	1.0	49
27	Complex Structure and Biochemical Characterization of the Staphylococcus aureus Cyclic Diadenylate Monophosphate (c-di-AMP)-binding Protein PstA, the Founding Member of a New Signal Transduction Protein Family. Journal of Biological Chemistry, 2015, 290, 2888-2901.	1.6	47
28	Potassium Uptake Systems in Staphylococcus aureus: New Stories about Ancient Systems. MBio, 2013, 4, e00784-13.	1.8	44
29	The Cell Wall Polymer Lipoteichoic Acid Becomes Nonessential in Staphylococcus aureus Cells Lacking the ClpX Chaperone. MBio, 2016, 7, .	1.8	42
30	Inhibition of the Staphylococcus aureus c-di-AMP cyclase DacA by direct interaction with the phosphoglucosamine mutase GlmM. PLoS Pathogens, 2019, 15, e1007537.	2.1	35
31	Osmotic stress adaptation in Lactobacillus casei BL23 leads to structural changes in the cell wall polymer lipoteichoic acid. Microbiology (United Kingdom), 2013, 159, 2416-2426.	0.7	34
32	Highâ€ŧhroughput transposon sequencing highlights the cell wall as an important barrier for osmotic stress in methicillin resistant <i>Staphylococcus aureus</i> and underlines a tailored response to different osmotic stressors. Molecular Microbiology, 2020, 113, 699-717.	1.2	34
33	Identification of a Lipoteichoic Acid Glycosyltransferase Enzyme Reveals that GW-Domain-Containing Proteins Can Be Retained in the Cell Wall of Listeria monocytogenes in the Absence of Lipoteichoic Acid or Its Modifications. Journal of Bacteriology, 2016, 198, 2029-2042.	1.0	31
34	Designer broad-spectrum polyimidazolium antibiotics. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31376-31385.	3.3	31
35	Inactivation of the Monofunctional Peptidoglycan Glycosyltransferase SgtB Allows <i>Staphylococcus aureus</i> To Survive in the Absence of Lipoteichoic Acid. Journal of Bacteriology, 2019, 201, .	1.0	30
36	Identification of the main glutamine and glutamate transporters in <i>Staphylococcus aureus</i> and their impact on câ€diâ€AMP production. Molecular Microbiology, 2020, 113, 1085-1100.	1.2	27

Angelika Gründling

#	Article	IF	CITATIONS
37	Structural and Mechanistic Insight into the Listeria monocytogenes Two-enzyme Lipoteichoic Acid Synthesis System. Journal of Biological Chemistry, 2014, 289, 28054-28069.	1.6	25
38	Cell Shape and Antibiotic Resistance Are Maintained by the Activity of Multiple FtsW and RodA Enzymes in Listeria monocytogenes. MBio, 2019, 10, .	1.8	24
39	Use of the counter selectable marker PheS* for genome engineering in Staphylococcus aureus. Microbiology (United Kingdom), 2019, 165, 572-584.	0.7	24
40	Evolutionary Adaptation of the Essential tRNA Methyltransferase TrmD to the Signaling Molecule 3′,5′-cAMP in Bacteria. Journal of Biological Chemistry, 2017, 292, 313-327.	1.6	21
41	Harnessing the power of transposon mutagenesis for antibacterial target identification and evaluation. Mobile Genetic Elements, 2012, 2, 171-178.	1.8	19
42	Modifications of cell wall polymers in Gram-positive bacteria by multi-component transmembrane glycosylation systems. Current Opinion in Microbiology, 2021, 60, 24-33.	2.3	19
43	GtcA is required for LTA glycosylation in Listeria monocytogenes serovar 1/2a and Bacillus subtilis. Cell Surface, 2020, 6, 100038.	1.5	18
44	Galactosylated wall teichoic acid, but not lipoteichoic acid, retains InIB on the surface of serovar 4b <i>Listeria monocytogenes</i> . Molecular Microbiology, 2020, 113, 638-649.	1.2	17
45	Phosphoglycerol-type wall and lipoteichoic acids are enantiomeric polymers differentiated by the stereospecific glycerophosphodiesterase GlpQ. Journal of Biological Chemistry, 2020, 295, 4024-4034.	1.6	16
46	Structure-Based Discovery of Lipoteichoic Acid Synthase Inhibitors. Journal of Chemical Information and Modeling, 2022, 62, 2586-2599.	2.5	13
47	Old concepts, new molecules and current approaches applied to the bacterial nucleotide signalling field. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150503.	1.8	10
48	Bacillus subtilis YngB contributes to wall teichoic acid glucosylation and glycolipid formation during anaerobic growth. Journal of Biological Chemistry, 2021, 296, 100384.	1.6	10
49	Structural basis for the inhibition of the Bacillus subtilis c-di-AMP cyclase CdaA by the phosphoglucomutase GlmM. Journal of Biological Chemistry, 2021, 297, 101317.	1.6	10
50	Investigation of the phosphorylation of Bacillus subtilis LTA synthases by the serine/threonine kinase PrkC. Scientific Reports, 2018, 8, 17344.	1.6	8
51	Cationic Glycosylated Block Co-β-peptide Acts on the Cell Wall of Gram-Positive Bacteria as Anti-biofilm Agents. ACS Applied Bio Materials, 2021, 4, 3749-3761.	2.3	8
52	EslB Is Required for Cell Wall Biosynthesis and Modification in Listeria monocytogenes. Journal of Bacteriology, 2021, 203, .	1.0	6
53	Editorial overview: Cell regulation: When you think you know it all, there is another layer to be discovered. Current Opinion in Microbiology, 2015, 24, v-vii.	2.3	0
54	Editorial overview: "All in all, it is not just another brick in the wall― new concepts and mechanisms on how bacteria build their wall. Current Opinion in Microbiology, 2021, 62, 110-113.	2.3	0