Bo Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5379861/publications.pdf

Version: 2024-02-01

257450 276875 2,067 94 24 41 citations h-index g-index papers 115 115 115 1634 citing authors docs citations times ranked all docs

#	Article	IF	Citations
1	Metal-Catalyzed Regioselective Oxy-Functionalization of Internal Alkynes:  An Entry into Ketones, Acetals, and Spiroketals. Organic Letters, 2006, 8, 4907-4910.	4.6	209
2	Total Synthesis and Structure Revision of the Marine Metabolite Palmerolide A. Journal of the American Chemical Society, 2007, 129, 6386-6387.	13.7	113
3	Bioinspired Total Synthesis of Bolivianine: A Diels– Alder/Intramolecular Hetero-Diels–Alder Cascade Approach. Journal of the American Chemical Society, 2013, 135, 9291-9294.	13.7	97
4	Enantioselective Strecker Reactions between Aldimines and Trimethylsilyl Cyanide Promoted by ChiralN,N′-Dioxides. European Journal of Organic Chemistry, 2003, 2003, 3818-3826.	2.4	87
5	Total Synthesis of Phorboxazole B. Chemistry - A European Journal, 2006, 12, 1185-1204.	3.3	82
6	Enantioselective Strecker Reaction Promoted by Chiral N-Oxides. Synlett, 2001, 2001, 1551-1554.	1.8	80
7	Total Synthesis of Atisane-Type Diterpenoids: Application of Diels–Alder Cycloadditions of Podocarpane-Type Unmasked ⟨i⟩ortho-⟨li⟩Benzoquinones. Journal of the American Chemical Society, 2015, 137, 13706-13714.	13.7	71
8	Au(I)- and Pt(II)-Catalyzed Cycloetherification of ω-Hydroxy Propargylic Esters. Organic Letters, 2008, 10, 2533-2536.	4.6	68
9	Asymmetric Total Synthesis of Hispidaninâ€A. Angewandte Chemie - International Edition, 2017, 56, 5849-5852.	13.8	61
10	Total Synthesis of (±) <i>-</i> Chloranthalactone A. Organic Letters, 2011, 13, 5406-5408.	4.6	53
11	Total Syntheses of Sarcandrolideâ€J and Shizukaolâ€D: Lindenane Sesquiterpenoid [4+2] Dimers. Angewandte Chemie - International Edition, 2017, 56, 637-640.	13.8	53
12	Asymmetric Total Synthesis of Onoseriolide, Bolivianine, and Isobolivianine. Chemistry - A European Journal, 2014, 20, 2613-2622.	3.3	50
13	Asymmetric Total Synthesis of Leucosceptroid B. Angewandte Chemie - International Edition, 2013, 52, 952-955.	13.8	44
14	Total syntheses of lindenane-type sesquiterpenoids: $(\hat{A}\pm)$ -chloranthalactones A, B, F, $(\hat{A}\pm)$ -9-hydroxy heterogorgiolide, and $(\hat{A}\pm)$ -shizukanolide E. Tetrahedron, 2012, 68, 9624-9637.	1.9	43
15	Naturally occurring $[4+2]$ type terpenoid dimers: sources, bioactivities and total syntheses. Natural Product Reports, 2020, 37, 1627-1660.	10.3	41
16	Toward the Total Synthesis of Natural Peloruside A:  Stereoselective Synthesis of the Backbone of the Core. Organic Letters, 2004, 6, 71-74.	4.6	37
17	Total Synthesis of Atisane-Type Diterpenoids and Related Diterpenoid Alkaloids. Synthesis, 2015, 47, 2691-2708.	2.3	36
18	Construction of the Cyclophane Core of the Hirsutellones via a RCM Strategy. Organic Letters, 2010, 12, 2504-2507.	4.6	35

#	Article	IF	CITATIONS
19	Total synthesis of natural products <i>via</i> ii>iridium catalysis. Organic Chemistry Frontiers, 2018, 5, 106-131.	4.5	33
20	Studies toward the total synthesis of the hirsutellones. Tetrahedron Letters, 2009, 50, 2797-2800.	1.4	31
21	Formal carbo [3+3] annulation and its application in organic synthesis. Tetrahedron Letters, 2015, 56, 1474-1485.	1.4	30
22	Total synthesis of nannocystin Ax. Chemical Communications, 2017, 53, 5549-5552.	4.1	30
23	A unified strategy toward total syntheses of lindenane sesquiterpenoid [4 + 2] dimers. Nature Communications, 2019, 10, 1892.	12.8	27
24	Asymmetric total synthesis of ent-heliespirones A & Demical Communications, 2010, 46, 5280.	4.1	26
25	An entry to vinylcyclopropane through palladium-catalyzed intramolecular cyclopropanation of alkenes with unstabilized allylic tosylhydrazones. Chemical Communications, 2015, 51, 6179-6182.	4.1	24
26	Synthesis of a series of novel chiral Lewis base catalysts and their application in promoting asymmetric hydrosilylation of β-enamino esters. Organic and Biomolecular Chemistry, 2013, 11, 3089.	2.8	23
27	Asymmetric Synthesis of Hispidaninâ€A and Related Diterpenoids. Chemistry - A European Journal, 2018, 24, 9120-9129.	3.3	23
28	Recent progress in the synthesis of limonoids and limonoid-like natural products. Organic Chemistry Frontiers, 2020, 7, 1903-1947.	4.5	23
29	Stereoselective synthesis of the C21î—,C27 fragment of the phorboxazoles. Tetrahedron Letters, 2003, 44, 4933-4935.	1.4	19
30	Synthetic Studies toward Lindenane-Type Sesquiterpenoid Dimers. Synlett, 2014, 25, 2471-2474.	1.8	19
31	Total synthesis of crotophorbolone. Chemical Science, 2020, 11, 7177-7181.	7.4	19
32	Asymmetric Total Synthesis of Rumphellclovane E. Organic Letters, 2021, 23, 290-295.	4.6	19
33	Gold-catalyzed synthesis of nitrogen-containing heterocycles from Îμ-N-protected propargylic esters. Organic and Biomolecular Chemistry, 2010, 8, 2697.	2.8	17
34	The first stereoselective synthesis of orostanal, a novel abeo-sterol inducing apoptosis in leukemia cells. Tetrahedron Letters, 2002, 43, 4187-4189.	1.4	16
35	Iron-Catalyzed Intramolecular Perezone-Type [5 + 2] Cycloaddition: Access to Tricyclo[6.3.1.0 ^{1,6}]dodecane. Organic Letters, 2018, 20, 2934-2938.	4.6	16
36	The first stereoselective synthesis of orostanal isolated from a marine sponge Stelletta hiwasaensis. Tetrahedron, 2003, 59, 3379-3384.	1.9	15

#	Article	IF	CITATIONS
37	Total syntheses of the proposed structures of cuevaene A. Tetrahedron Letters, 2010, 51, 4655-4657.	1.4	15
38	Asymmetric synthesis and absolute stereochemistry of a labdane-type diterpenoid isolated from the rhizomes of Isodan yuennanensis. Organic and Biomolecular Chemistry, 2016, 14, 6225-6230.	2.8	15
39	An alternative total synthesis of bolivianine. Chinese Chemical Letters, 2017, 28, 113-116.	9.0	15
40	Asymmetric Total Synthesis of Hispidaninâ€A. Angewandte Chemie, 2017, 129, 5943-5946.	2.0	15
41	Asymmetric synthesis of the fully functionalized six-membered ring of trigoxyphin A. Chemical Communications, 2018, 54, 7665-7668.	4.1	15
42	Research Progress on $[3+\langle i\rangle n\langle i\rangle]$ ($\langle i\rangle n\langle i\rangle a\% = 3$) Cycloaddition of 1,3-Diploes. Chinese Journal of Organic Chemistry, 2020, 40, 3132.	1.3	13
43	Platinumâ€Catalyzed Regioselective Formation of βâ€Alkoxy Ketones from Internal Alkynes. European Journal of Organic Chemistry, 2010, 2010, 4185-4188.	2.4	12
44	Deprotection of 1,3-oxathiolanes to ketones promoted by base. Tetrahedron Letters, 2013, 54, 2217-2220.	1.4	12
45	Nannocystin ax, an eEF1A inhibitor, induces G1 cell cycle arrest and caspase-independent apoptosis through cyclin D1 downregulation in colon cancer in vivo. Pharmacological Research, 2021, 173, 105870.	7.1	12
46	Asymmetric total syntheses of heliannuol E and epi-heliannuol E. Tetrahedron Letters, 2011, 52, 5802-5804.	1.4	11
47	Synthesis of derivatives of podocarpane-type diterpenoids through Diels-Alder cycloaddition and photo-decarbonylation from unmasked ortho-benzoquinone. Tetrahedron, 2017, 73, 4070-4075.	1.9	11
48	Progress in the Total Syntheses oftrans-Hydrindane-Containing Terpenoids. Chinese Journal of Organic Chemistry, 2013, 33, 1167.	1.3	11
49	Synthesis of Polycyclic Frameworks through Iron-Catalyzed Intramolecular [5+2] Cycloaddition. Synlett, 2018, 29, 1978-1982.	1.8	10
50	Synthetic Progress of Daphnane-type Diterpenoids. Acta Chimica Sinica, 2016, 74, 24.	1.4	10
51	Asymmetric Total Synthesis of Shizukaol J, Trichloranoid C and Trishizukaol A. Angewandte Chemie - International Edition, 2022, 61, .	13.8	10
52	Total synthesis of five natural eremophilane-type sesquiterpenoids. Organic and Biomolecular Chemistry, 2018, 16, 957-962.	2.8	9
53	Total Synthesis of Natural Terpenoids: Inspired but Not Limited by Biohypothesis. Synlett, 2018, 29, 863-873.	1.8	9
54	Recent advances in alkaline earth metal-enabled syntheses of heterocyclic compounds. Organic and Biomolecular Chemistry, 2020, 18, 6443-6466.	2.8	9

#	Article	IF	Citations
55	A base-promoted deprotection of 1,3-dioxolanes to ketones. Tetrahedron Letters, 2012, 53, 6972-6976.	1.4	8
56	Toward the synthesis of hirsutellone B via an intramolecular Diels–Alder/ketene-trapping strategy. Tetrahedron, 2015, 71, 3603-3608.	1.9	8
57	Synthesis of Qinghaosu Analogues from Dihydroqinghao Aldehyde: A Dark Singlet Oxygen Approach. Chinese Journal of Chemistry, 2017, 35, 465-476.	4.9	8
58	Total synthesis and structural revision of an isopanepoxydone analog isolated from Lentinus strigellus. Organic and Biomolecular Chemistry, 2018, 16, 5043-5049.	2.8	8
59	Computational Analysis of Synthetic Planning: Past and Future. Chinese Journal of Chemistry, 2021, 39, 3127-3143.	4.9	8
60	Progress in Total Syntheses of Lindenane-Type Sesquiterpenoids and Their Dimers. Chinese Journal of Organic Chemistry, 2013, 33, 90.	1.3	8
61	Total synthesis of norleucosceptroids F and G. Chinese Chemical Letters, 2015, 26, 1341-1344.	9.0	7
62	Divergent Total Synthesis of Atisaneâ€Type Diterpenoids. Chemical Record, 2017, 17, 584-596.	5 . 8	7
63	Asymmetric Synthesis of the Ring A Substructure of Genkwadane A. Chinese Journal of Chemistry, 2018, 36, 831-836.	4.9	7
64	Construction of BCDEF Core of Andilesin C. Organic Letters, 2019, 21, 7809-7812.	4.6	7
65	The journey of total synthesis toward nannocystin Ax. Tetrahedron, 2019, 75, 1781-1794.	1.9	7
66	Construction of the Tetracyclic Core Structure of Dysiherbols A–C. Organic Letters, 2022, 24, 1642-1646.	4.6	7
67	Racemic and enantioselective total synthesis of heliespirones A & D. Science China Chemistry, 2011, 54, 43-55.	8.2	6
68	Total Syntheses of Sarcandrolideâ€J and Shizukaolâ€D: Lindenane Sesquiterpenoid [4+2] Dimers. Angewandte Chemie, 2017, 129, 652-655.	2.0	6
69	Total synthesis of (±)- <i>epi</i> -stemodan-13α,17-diol. Organic and Biomolecular Chemistry, 2019, 17, 4711-4714.	2.8	6
70	Chiral Pool Guided Syntheses of Polycyclic Natural Products. Chinese Journal of Chemistry, 2022, 40, 407.	4.9	6
71	Zeise's dimer-catalyzed regioselective hydration of homopropargyl tertiary ether. Tetrahedron Letters, 2012, 53, 4955-4958.	1.4	5
72	Expedient Synthesis of (<i>R</i>)â€Curcuphenol: A Chiral Pool Strategy. Chinese Journal of Chemistry, 2013, 31, 23-26.	4.9	5

#	Article	IF	CITATIONS
73	Exploiting ortho-substitution effect on formation of oxygen-containing [10] paracyclophane through ring-closing metathesis. Organic Chemistry Frontiers, 2016, 3, 319-323.	4.5	5
74	Carbon–Oxygen Homocoupling of 2-Naphthols through Electrochemical Oxidative Dearomatization. Synlett, 2019, 30, 903-909.	1.8	5
75	Synthetic Study Aiming at the Tricyclic Core of 12- <i>epi</i> -JBIR-23/24. Organic Letters, 2021, 23, 3151-3156.	4.6	5
76	Nannocystin Ax, a natural elongation factor $1\hat{l}_{\pm}$ inhibitor from Nannocystis sp., suppresses epithelial-mesenchymal transition, adhesion and migration in lung cancer cells. Toxicology and Applied Pharmacology, 2021, 420, 115535.	2.8	5
77	Catalytic radical cascade cyclization of alkene-tethered enones to fused bicyclic cyclopropanols. Organic Chemistry Frontiers, 2021, 8, 6678-6686.	4.5	5
78	A Diels–Alder Approach toward the Scaffolds of Polycyclic Sesquiterpenoids with 2-Pyrone. Synlett, 2014, 25, 681-686.	1.8	4
79	Total synthesis of proposed structures of jiangrines C and D. Science China Chemistry, 2016, 59, 1205-1210.	8.2	4
80	Oxidative cleavage of hydroxamic acid promoted by sodium periodate. Tetrahedron, 2017, 73, 3622-3628.	1.9	4
81	Total synthesis and confirmation of the revised structures of jiangrines A, C and D. Organic and Biomolecular Chemistry, 2017, 15, 207-212.	2.8	4
82	Asymmetric Total Synthesis of Natural Lindenane Sesquiterpenoid Oligomers via a Triene as a Potential Biosynthetic Intermediate. Angewandte Chemie - International Edition, 2022, 61, .	13.8	4
83	Total synthesis of heliespirone B. Tetrahedron Letters, 2015, 56, 4931-4933.	1.4	2
84	Asymmetric Total Synthesis of Shizukaol J, Trichloranoid C and Trishizukaol A. Angewandte Chemie, 0, ,	2.0	2
85	Construction of the Core Structure of Trichotomone. Synthesis, 2016, 48, 3951-3956.	2.3	1
86	Asymmetric Total Synthesis of 3-Furanoeudesmene, A Metabolitefrom Antarctic Gorgonian and Determination of Its AbsoluteConfiguration. Chinese Journal of Organic Chemistry, 2015, 35, 2157.	1.3	1
87	Total Synthesis of Farnesin through Excited-State Nazarov Cyclization. Chinese Journal of Organic Chemistry, 2020, 40, 2173.	1.3	1
88	Enantioselective Strecker Reactions Between Aldimines and Trimethylsilyl Cyanide Promoted by Chiral N,N′-Dioxides ChemInform, 2004, 35, no.	0.0	0
89	Total Synthesis of (±)-Spirobenzofuran. Synlett, 2013, 24, 615-618.	1.8	0
90	Total Synthesis of the Lindenane-Associated Terpenoids. Strategies and Tactics in Organic Synthesis, 2017, 13, 161-216.	0.1	0

Bo Liu

#	Article	lF	CITATION
91	Progress in Total Syntheses of Antiâ€malignant Pleural Mesothelioma Compounds. Journal of the Chinese Chemical Society, 2018, 65, 301-311.	1.4	O
92	Back Cover: Asymmetric Synthesis of the Ring A Substructure of Genkwadane A (Chin. J. Chem. 9/2018). Chinese Journal of Chemistry, 2018, 36, 888-888.	4.9	0
93	Remote Chirality Transfer through Medium Cycle Formation/Intramolecular Hydride Transfer Cascade. Chinese Journal of Chemistry, 2020, 38, 305-306.	4.9	0
94	Asymmetric Total Synthesis of Natural Lindenane Sesquiterpenoid Oligomers via a Triene as a Potential Biosynthetic Intermediate. Angewandte Chemie, 0, , .	2.0	0