
Carlos A Gutierrez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5379682/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	SDR-Based Wideband Emulator of Non-WSSUS Channels for Vehicular Communications. Circuits, Systems, and Signal Processing, 2022, 41, 3832-3852.	2.0	3
2	Doppler Spectrum Measurement Platform for Narrowband V2V Channels. IEEE Access, 2022, 10, 27162-27184.	4.2	7
3	Doppler Shift and Envelope Distribution of V2V Channels at 5.9 GHz in Suburban Environments. , 2022, ,		0
4	Influence of the Antenna Orientation on WiFi-Based Fall Detection Systems. Sensors, 2021, 21, 5121.	3.8	4
5	Wearable Urban Mobility Assistive Device for Visually Impaired Pedestrians Using a Smartphone and a Tactile-Foot Interface. Sensors, 2021, 21, 5274.	3.8	9
6	5G and Beyond: Past, Present and Future of the Mobile Communications. IEEE Latin America Transactions, 2021, 19, 1702-1736.	1.6	13
7	Distributed Utility Optimization in Vehicular Communication Systems. IEEE Transactions on Vehicular Technology, 2020, 69, 11992-12003.	6.3	1
8	A Non-WSSUS Channel Simulator for V2X Communication Systems. Electronics (Switzerland), 2020, 9, 1190.	3.1	7
9	Effects of Antenna Orientation in Fall Detection Systems Based on WiFi Signals. , 2020, , .		4
10	EQSM-based multiuser MIMO downlink transmission for correlated fading channels. Eurasip Journal on Wireless Communications and Networking, 2020, 2020, .	2.4	1
11	Doppler Shift Characterization of Wideband Mobile Radio Channels. IEEE Transactions on Vehicular Technology, 2019, 68, 12375-12380.	6.3	14
12	Geometrical Modeling of Non-Stationary Polarimetric Vehicular Radio Channels. , 2019, , .		2
13	Second Order Statistics and BER Performance Analysis of a non-WSSUS V2X Channel Model that Considers Velocity Variations. , 2019, , .		1
14	V2V Propagation in Mountainous Terrain: Part Ilâ \in "Modeling Results. , 2019, , .		2
15	V2V Propagation in Mountainous Terrain: Part l—Experimental Configuration and Measurement Results. , 2019, , .		3
16	SDR-Based Channel Emulator for Vehicular Communications. , 2019, , .		4
17	Implementation of a VLCâ€based indoor localization system. Transactions on Emerging Telecommunications Technologies, 2019, 30, e3498.	3.9	4
18	Extended quadrature spatial modulation for MIMO wireless communications. Physical Communication, 2019, 32, 88-95.	2.1	23

CARLOS A GUTIERREZ

#	Article	IF	CITATIONS
19	Distributed power control in mobile wireless sensor networks. Ad Hoc Networks, 2019, 85, 110-119.	5.5	8
20	A Novel Geometrical Model for Non-Stationary MIMO Vehicle-to-Vehicle Channels. IETE Technical Review (Institution of Electronics and Telecommunication Engineers, India), 2019, 36, 27-38.	3.2	5
21	Robust design of a linear quadratic power control algorithm in multiple-access networks. International Journal of Control, 2019, 92, 2842-2853.	1.9	2
22	Doppler spectrum measurements of vehicular radio channels using a narrowband sounder. Revista Facultad De IngenierÃa, 2019, , 32-40.	0.5	1
23	Geometry-Based Statistical Modeling of Non-WSSUS Mobile-to-Mobile Rayleigh Fading Channels. IEEE Transactions on Vehicular Technology, 2018, 67, 362-377.	6.3	46
24	Volume Based Opportunistic Interference Alignment over Correlated MIMO IBC. , 2018, , .		2
25	A Non-WSSUS Rice Fading Channel Model for Vehicular Communications. , 2018, , .		3
26	Modelling of Non-WSSUS Channels with Time-Variant Doppler and Delay Characteristics. , 2018, , .		16
27	On the Influence of the non-WSSUS Condition in the Performance of IEEE 802.11-Based Channel Estimators for Vehicular Communications. , 2018, , .		2
28	Doppler Power Spectrum Measurements of Vehicular Channels in the 700 MHz Band. , 2018, , .		2
29	Channel Modeling and Simulation for Vehicular Communications. Wireless Communications and Mobile Computing, 2018, 2018, 1-2.	1.2	0
30	Adaptive segmentation methodology for hardware function evaluators. Computers and Electrical Engineering, 2018, 69, 194-211.	4.8	4
31	Modelling and Analysis of Nonstationary Vehicle-to-Infrastructure Channels with Time-Variant Angles of Arrival. Wireless Communications and Mobile Computing, 2018, 2018, 1-9.	1.2	2
32	Definition and Analysis of Quasi-Stationary Intervals of Mobile Radio Channels - Invited Paper. , 2018, , .		9
33	Constellation design for color space-based modulation in visible light communications. Physical Communication, 2018, 31, 154-159.	2.1	3
34	Power Allocation in Mobile Cellular Communication Under Multiplicative Noise and Interference Uncertainty. IEEE Transactions on Control of Network Systems, 2017, 4, 451-461.	3.7	1
35	A Non-Stationary Mobile-to-Mobile Channel Model Allowing for Velocity and Trajectory Variations of the Mobile Stations. IEEE Transactions on Wireless Communications, 2017, 16, 1987-2000.	9.2	54
36	On the Consistency of Non-Stationary Multipath Fading Channels with Respect to the Average Doppler Shift and the Doppler Spread. , 2017, , .		19

CARLOS A GUTIERREZ

#	Article	IF	CITATIONS
37	A Non-WSSUS Mobile-to-Mobile Channel Model Assuming Velocity Variations of the Mobile Stations. , 2017, , .		14
38	Modelling and Analysis of Non-Stationary Multipath Fading Channels with Time-Variant Angles of Arrival. , 2017, , .		3
39	Kinematic analysis and workspace simulation of humanoid robot KUBO. , 2017, , .		2
40	Bit error rate performance analysis of vehicular communication systems considering velocity variations of the mobile stations. , 2017, , .		6
41	Geometrical modeling of non-stationary double-Rayleigh fading channels for MIMO vehicle-to-vehicle communications. , 2017, , .		2
42	On the spectral moments of non-WSSUS mobile-to mobile double-Rayleigh fading channels. , 2017, , .		1
43	Modeling of Non-WSSUS Double-Rayleigh Fading Channels for Vehicular Communications. Wireless Communications and Mobile Computing, 2017, 2017, 1-15.	1.2	12
44	Enhancing the Resolution of the Spectrogram of Non-Stationary Mobile Radio Channels by Using Massive MIMO Techniques. , 2017, , .		8
45	First-order statistics analysis of two new geometrical models for non-WSSUS mobile-to-mobile channels. , 2016, , .		4
46	A novel function segmentation methodology for implementing affordable channel emulators. , 2016, , .		0
47	Spectrogram Analysis of Multipath Fading Channels under Variations of the Mobile Speed. , 2016, , .		8
48	The Wigner Distribution of Sum-of-Cissoids and Sum-of-Chirps Processes for the Modelling of Stationary and Non-Stationary Mobile Channels. , 2016, , .		10
49	Performance analysis of closedâ€loop preâ€equalisation for multiuser multipleâ€input multipleâ€output with multicarrier code division multiple access systems. IET Communications, 2016, 10, 235-244.	2.2	2
50	Eventâ€ŧriggered feedback for power allocation in wireless networks. IET Control Theory and Applications, 2015, 9, 2066-2074.	2.1	12
51	An analytical and experimental study of ultrasonic linear motors. Tehnicki Vjesnik, 2015, 22, 1057-1063.	0.2	2
52	Closed-loop pre-equalization for multiuser multicarrier MIMO systems under QoS restrictions. , 2015,		1
53	A reconfigurable hardware architecture for the simulation of Rayleigh fading channels under arbitrary scattering conditions. AEU - International Journal of Electronics and Communications, 2015, 69, 1-13.	2.9	13
54	Network Efficient Power Control for Wireless Communication Systems. Scientific World Journal, The, 2014, 2014, 1-14.	2.1	0

CARLOS A GUTIERREZ

#	Article	IF	CITATIONS
55	Poster: Simulation of wideband mobile-to-mobile channels for the performance analysis of DSRC systems. , 2014, , .		1
56	Modeling and control techniques for electric powered wheelchairs: An overview. , 2014, , .		6
57	Comparative performance analysis of two channel estimation techniques for DSRC systems based on the IEEE 802.11p standard. , 2014, , .		7
58	Pre-Equalization in the Downlink of a Multicarrier Wireless Network Under Utility and Sum-Rate Optimization. IEEE Transactions on Communications, 2014, 62, 3541-3551.	7.8	2
59	Efficient preâ€equalisation strategies for the downlink of a multiâ€carrier code division multipleâ€access wireless network. IET Communications, 2014, 8, 2074-2084.	2.2	1
60	The generalized method of equal areas for the design of sumâ€ofâ€cisoids simulators for mobile Rayleigh fading channels with arbitrary Doppler spectra. Wireless Communications and Mobile Computing, 2013, 13, 951-966.	1.2	19
61	Classes of sum-of-cisoids processes and their statistics for the modeling and simulation of mobile fading channels. Eurasip Journal on Wireless Communications and Networking, 2013, 2013, .	2.4	18
62	On the Correlation and Ergodic Properties of the Squared Envelope of SOC Rayleigh Fading Channel Simulators. Wireless Personal Communications, 2013, 68, 963-979.	2.7	5
63	Modeling and Simulation of Mobile Radio Channels. Modelling and Simulation in Engineering, 2012, 2012, 1-2.	0.7	1
64	Insights into the Capabilities of Tactile-Foot Perception. International Journal of Advanced Robotic Systems, 2012, 9, 179.	2.1	18
65	An Exact Solution for the Level-Crossing Rate and the Average Duration of Fades of the Envelope of Sum-of-Cisoids Processes. Procedia Technology, 2012, 3, 30-40.	1.1	3
66	A Differential-Drive Mobile Robot Driven by an Ethology Inspired Behaviour Architecture. Procedia Technology, 2012, 3, 157-166.	1.1	9
67	An Ergodic Sum-of-Cisoids Simulator for Multiple Uncorrelated Rayleigh Fading Channels Under Generalized Scattering Conditions. IEEE Transactions on Vehicular Technology, 2012, 61, 2375-2382.	6.3	11
68	Analysis of error in the estimation of the temporal ACF of ergodic sum-of-cisoids simulators for mobile fading channels. , 2011, , .		2
69	On the Correlation Properties of the Squared Envelope of Ergodic Sum-Of-Cisoids Rayleigh Fading Channel Simulators. , 2010, , .		1
70	The design of sum-of-cisoids rayleigh fading channel simulators assuming non-isotropic scattering conditions. IEEE Transactions on Wireless Communications, 2010, 9, 1308-1314.	9.2	37
71	A generalized method for the design of ergodic sum-of-cisoids simulators for multiple uncorrelated rayleigh fading channels. , 2010, , .		3
72	The Riemann sum method for the design of sum-of-cisoids simulators for Rayleigh fading channels in non-isotropic scattering environments. , 2009, , .		8

#	Article	lF	CITATIONS
73	On the problems of symbolâ€spaced tappedâ€delayâ€line models for WSSUS channels. Wireless Communications and Mobile Computing, 2009, 9, 1181-1193.	1.2	1
74	Level-Crossing Rate and Average Duration of Fades of the Envelope of a Sum-of-Cisoids. IEEE Vehicular Technology Conference, 2008, , .	0.4	11
75	Sum-of-Sinusoids-Based Simulation of Flat Fading Wireless Propagation Channels Under Non-Isotropic Scattering Conditions. , 2007, , .		25
76	Minimizing the Response Times of Aperiodic Tasks in Hard Real-time Systems with EDF. , 2006, , .		4