Davide Audisio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5379481/publications.pdf

Version: 2024-02-01

186254 2,278 68 28 citations papers

243610 44 h-index g-index

87 87 87 1790 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A Sydnone-Based Route to Indazolo[2,3-a]quinoxaline Derivatives. Synlett, 2022, 33, 791-794.	1.8	1
2	Monitoring In Vivo Performances of Protein–Drug Conjugates Using Site-Selective Dual Radiolabeling and Ex Vivo Digital Imaging. Journal of Medicinal Chemistry, 2022, 65, 6953-6968.	6.4	6
3	Late-Stage Carbon-14 Labeling and Isotope Exchange: Emerging Opportunities and Future Challenges. Jacs Au, 2022, 2, 1234-1251.	7.9	21
4	Selective chlorination of iminosydnones for fast release of amide, sulfonamide and urea-containing drugs. Chemical Communications, 2022, 58, 8500-8503.	4.1	5
5	Click and Bio-Orthogonal Reactions with Mesoionic Compounds. Chemical Reviews, 2021, 121, 6718-6743.	47.7	47
6	Bioorthogonal Reactions in Animals. ChemBioChem, 2021, 22, 100-113.	2.6	22
7	Photochemical Strategy for Carbon Isotope Exchange with CO ₂ . ACS Catalysis, 2021, 11, 2968-2976.	11.2	32
8	Direct Carbon Isotope Exchange of Pharmaceuticals via Reversible Decyanation. Journal of the American Chemical Society, 2021, 143, 5659-5665.	13.7	15
9	Heterohelicenes through 1,3-Dipolar Cycloaddition of Sydnones with Arynes: Synthesis, Origins of Selectivity, and Application to pH-Triggered Chiroptical Switch with CPL Sign Reversal. Jacs Au, 2021, 1, 807-818.	7.9	29
10	A general procedure for carbon isotope labeling of linear urea derivatives with carbon dioxide. Chemical Communications, 2021, 57, 6680-6683.	4.1	17
11	Carbon isotope labeling of carbamates by late-stage [¹¹ C], [¹³ C] and [¹⁴ C]carbon dioxide incorporation. Chemical Communications, 2020, 56, 11677-11680.	4.1	19
12	Access to <i>N</i> -Carbonyl Derivatives of Iminosydnones by Carbonylimidazolium Activation. Organic Letters, 2020, 22, 2403-2408.	4.6	11
13	Transitionâ€Metalâ€Free Carbon Isotope Exchange of Phenyl Acetic Acids. Angewandte Chemie, 2020, 132, 13592-13597.	2.0	3
14	Transitionâ∈Metalâ∈Free Carbon Isotope Exchange of Phenyl Acetic Acids. Angewandte Chemie - International Edition, 2020, 59, 13490-13495.	13.8	44
15	Fluorogenic probes based on polycyclic sydnone scaffolds. Tetrahedron, 2020, 76, 131250.	1.9	7
16	Fluorogenic iminosydnones: bioorthogonal tools for double turn-on click-and-release reactions. Chemical Communications, 2020, 56, 7183-7186.	4.1	18
17	Strainâ€Promoted 1,3â€Dithioliumâ€4â€olates–Alkyne Cycloaddition. Angewandte Chemie, 2019, 131, 14686	5-1 246 90.	10
18	New fluorine-18 pretargeting PET imaging by bioorthogonal chlorosydnone–cycloalkyne click reaction. Chemical Communications, 2019, 55, 10400-10403.	4.1	22

#	Article	IF	Citations
19	Strainâ€Promoted 1,3â€Dithioliumâ€4â€olates–Alkyne Cycloaddition. Angewandte Chemie - International Edition, 2019, 58, 14544-14548.	13.8	18
20	Catalytic Decarboxylation/Carboxylation Platform for Accessing Isotopically Labeled Carboxylic Acids. ACS Catalysis, 2019, 9, 5897-5901.	11.2	51
21	Sydnone-based turn-on fluorogenic probes for no-wash protein labeling and in-cell imaging. Chemical Communications, 2019, 55, 4582-4585.	4.1	27
22	Controlled Release of a Micelle Payload via Sequential Enzymatic and Bioorthogonal Reactions in Living Systems. Angewandte Chemie - International Edition, 2019, 58, 6366-6370.	13.8	45
23	Controlled Release of a Micelle Payload via Sequential Enzymatic and Bioorthogonal Reactions in Living Systems. Angewandte Chemie, 2019, 131, 6432-6436.	2.0	11
24	Accelerated Discovery in Photocatalysis by a Combined Screening Approach Involving MS Tags. Organic Letters, 2019, 21, 9747-9752.	4.6	7
25	Visible-Light-Enabled Aminocarbonylation of Unactivated Alkyl Iodides with Stoichiometric Carbon Monoxide for Application on Late-Stage Carbon Isotope Labeling. Journal of Organic Chemistry, 2019, 84, 16076-16085.	3.2	26
26	Dynamic Carbon Isotope Exchange of Pharmaceuticals with Labeled CO ₂ . Journal of the American Chemical Society, 2019, 141, 780-784.	13.7	44
27	Sydnone-Based Approach to Heterohelicenes through 1,3-Dipolar-Cycloadditions. Journal of the American Chemical Society, 2019, 141, 1435-1440.	13.7	43
28	A Practical Synthesis of Valuable Strained Eightâ€Memberedâ€Ring Derivatives for Click Chemistry. European Journal of Organic Chemistry, 2018, 2018, 2000-2008.	2.4	9
29	Design and Synthesis of Iminosydnones for Fast Click and Release Reactions with Cycloalkynes. Chemistry - A European Journal, 2018, 24, 8535-8541.	3.3	33
30	Copper-Catalyzed Aza-Iminosydnone-Alkyne Cycloaddition Reaction Discovered by Screening. ACS Catalysis, 2018, 8, 11882-11888.	11.2	17
31	Lateâ€Stage Isotopic Carbon Labeling of Pharmaceutically Relevant Cyclic Ureas Directly from CO ₂ . Angewandte Chemie, 2018, 130, 9892-9896.	2.0	11
32	Sydnone-coumarins as clickable turn-on fluorescent sensors for molecular imaging. Chemical Communications, 2018, 54, 10758-10761.	4.1	38
33	Visibleâ€Lightâ€Driven Reduction of CO ₂ to CO and Its Subsequent Valorization in Carbonylation Chemistry and ¹³ C Isotope Labeling. ChemPhotoChem, 2018, 2, 715-719.	3.0	16
34	Recent developments in heterocycle labeling with carbon isotopes. Journal of Labelled Compounds and Radiopharmaceuticals, 2018, 61, 988-1007.	1.0	19
35	Lateâ€Stage Isotopic Carbon Labeling of Pharmaceutically Relevant Cyclic Ureas Directly from CO ₂ . Angewandte Chemie - International Edition, 2018, 57, 9744-9748.	13.8	45
36	Scalable and practical synthesis of clickable Cu-chelating azides. Chemical Communications, 2017, 53, 7890-7893.	4.1	12

#	Article	IF	Citations
37	Sydnone–alkyne cycloaddition: applications in synthesis and bioconjugation. Chemical Communications, 2017, 53, 11515-11527.	4.1	76
38	Bioorthogonal Click and Release Reaction of Iminosydnones with Cycloalkynes. Angewandte Chemie - International Edition, 2017, 56, 15612-15616.	13.8	91
39	Bioorthogonal Click and Release Reaction of Iminosydnones with Cycloalkynes. Angewandte Chemie, 2017, 129, 15818-15822.	2.0	32
40	A Straightforward Access to [14C]- and [13C]-Labeled 2-Aminobenzoxazoles and Benzothiazoles via a KCN Polarity Inversion Strategy. Synlett, 2016, 27, 1798-1802.	1.8	9
41	Ultrafast Click Chemistry with Fluorosydnones. Angewandte Chemie - International Edition, 2016, 55, 12073-12077.	13.8	93
42	Ultrafast Click Chemistry with Fluorosydnones. Angewandte Chemie, 2016, 128, 12252-12256.	2.0	20
43	Palladiumâ€catalyzed decarboxylative cyanation of aromatic carboxylic acids using [¹³ C] and [¹⁴ C]â€KCN. Journal of Labelled Compounds and Radiopharmaceuticals, 2015, 58, 425-428.	1.0	11
44	Copper(I)-Catalyzed Cycloaddition of 4-Bromosydnones and Alkynes for the Regioselective Synthesis of 1,4,5-Trisubstituted Pyrazoles. Organic Letters, 2015, 17, 362-365.	4.6	46
45	Dynamic behaviour of monohaptoallylpalladium species: internal coordination as a driving force in allylic alkylation chemistry. Chemical Science, 2015, 6, 5734-5739.	7.4	8
46	Synthesis and antiproliferative activity of novobiocin analogues as potential hsp90 inhibitors. European Journal of Medicinal Chemistry, 2014, 83, 498-507.	5.5	26
47	Direct Synthesis of Stereodefined and Functionalized Dienes as Valuable Building Blocks. Chimia, 2014, 68, 248.	0.6	4
48	Dual Catalysis Becomes Diastereodivergent. Angewandte Chemie - International Edition, 2013, 52, 13149-13152.	13.8	144
49	Diastereodivergent Processes in Palladiumâ€Catalyzed Allylic Alkylation. ChemCatChem, 2013, 5, 1239-1247.	3.7	23
50	An Atomâ€Economical and Stereoselective Domino Synthesis of Functionalised Dienes. Chemistry - A European Journal, 2013, 19, 6566-6570.	3.3	24
51	Regio- and Enantioselective Cyclobutene Allylations. Organic Letters, 2013, 15, 2318-2321.	4.6	31
52	Stereoselective Synthesis of Dienyl-Carboxylate Building Blocks: Formal Synthesis of Inthomycin C. Organic Letters, 2013, 15, 3242-3245.	4.6	49
53	Palladiumâ€Catalyzed Allylic Substitution at Fourâ€Memberedâ€Ring Systems: Formation of η ¹ â€Allyl Complexes and Electrocyclic Ring Opening. Angewandte Chemie - International Edition, 2013, 52, 6313-6316.	13.8	30
54	Direct Domino Synthesis of Azido-Dienoic Acids: Potential Linker Units. Synlett, 2013, 24, 1286-1290.	1.8	10

#	Article	IF	Citations
55	Diastereodivergent Deâ€epimerization in Catalytic Asymmetric Allylic Alkylation. Angewandte Chemie - International Edition, 2012, 51, 7314-7317.	13.8	68
56	Synthesis and antikinetoplastid activities of 3-substituted quinolinones derivatives. European Journal of Medicinal Chemistry, 2012, 52, 44-50.	5. 5	29
57	A General Copper Powder-Catalyzed Ullmann-Type Reaction of 3-Halo-4(1H)-quinolones With Various Nitrogen-Containing Nucleophiles. Journal of Organic Chemistry, 2011, 76, 4995-5005.	3.2	66
58	Palladiumâ€Catalyzed Coupling of 3â€Haloâ€Substituted Coumarins, Chromenes, and Quinolones with Various Nitrogenâ€Containing Nucleophiles. European Journal of Organic Chemistry, 2011, 2011, 5077-5088.	2.4	33
59	Discovery and Biological Activity of 6BrCaQ as an Inhibitor of the Hsp90 Protein Folding Machinery. ChemMedChem, 2011, 6, 804-815.	3.2	40
60	Catalytic Asymmetric Diastereodivergent Deracemization. Angewandte Chemie - International Edition, 2011, 50, 12631-12635.	13.8	152
61	Palladium-Catalysed Synthesis of Stereodefined Cyclobutenes. Synlett, 2011, 2011, 735-740.	1.8	5
62	Therapeutic Potential of New 4-hydroxy-tamoxifen-Loaded pH-gradient Liposomes in a Multiple Myeloma Experimental Model. Pharmaceutical Research, 2010, 27, 327-339.	3.5	15
63	A Simple Synthesis of Functionalized 3â€Bromocoumarins by a Oneâ€Pot Threeâ€Component Reaction. European Journal of Organic Chemistry, 2010, 2010, 1046-1051.	2.4	38
64	Assessing the chemical diversity of an hsp90 database. European Journal of Medicinal Chemistry, 2010, 45, 2000-2009.	5. 5	21
65	Rapid access to 3-(N-substituted)-aminoquinolin-2(1H)-ones using palladium-catalyzed C–N bond coupling reaction. Tetrahedron, 2007, 63, 10202-10210.	1.9	55
66	A convenient and expeditious synthesis of 3-(N-substituted) aminocoumarins via palladium-catalyzed Buchwald–Hartwig coupling reaction. Tetrahedron Letters, 2007, 48, 6928-6932.	1.4	63
67	Investigation on the Stoichiometry of Carbon Dioxide in Isotope-Exchange Reactions with Phenylacetic Acids. Synlett, 0, , .	1.8	6
68	Parallel Screening with ¹⁴ Câ€Labeled Carbon Dioxide: Deâ€risking the Staudingerâ€Azaâ€Wittig Reaction**. European Journal of Organic Chemistry, 0, , .	2.4	2