
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5379430/publications.pdf Version: 2024-02-01

KEM A ROCERS

#	Article	IF	CITATIONS
1	Brain health: Key to health, productivity, and wellâ€being. Alzheimer's and Dementia, 2022, 18, 1396-1407.	0.4	27
2	Perspectives of online anatomy teachers: A neglected study population struggles with the invisible student. Anatomical Sciences Education, 2022, 15, 233-248.	2.5	3
3	Are Clerks Proficient in the Basic Sciences? Assessment of Third-Year Medical Students' Basic Science Knowledge Prior to and at the Completion of Core Clerkship Rotations. Medical Science Educator, 2021, 31, 709-722.	0.7	3
4	Expectations and Perceptions of Students' Basic Science Knowledge: Through the Lens of Clerkship Directors. Medical Science Educator, 2020, 30, 355-365.	0.7	9
5	Close Association of Myeloperoxidase-Producing Activated Microglia with Amyloid Plaques in Hypercholesterolemic Rabbits. Journal of Alzheimer's Disease, 2019, 67, 1221-1234.	1.2	3
6	Quantification of Morphological Modulation, F-Actin Remodeling, and PECAM-1 (CD-31) Redistribution in Endothelial Cells in Response to Fluid-Induced Shear Stress Under Various Flow Conditions. Journal of Biomechanical Engineering, 2019, 141, .	0.6	7
7	Are We Effectively Teaching the Basic Sciences? The Influence of Pedagogical Methods on 3rd Year Medical Students' Basic Science Knowledge Retention in an Undergraduate Medical Education Curriculum. FASEB Journal, 2019, 33, 438.7.	0.2	0
8	Improving Online Interactions: Lessons from an Online Anatomy Course with a Laboratory for Undergraduate Students. Anatomical Sciences Education, 2018, 11, 592-604.	2.5	45
9	Wall Shear Stress Determination in a Small-Scale Parallel Plate Flow Chamber Using Laser Doppler Velocimetry Under Laminar, Pulsatile and Low-Reynolds Number Turbulent Flows. Journal of Fluids Engineering, Transactions of the ASME, 2018, 140, .	0.8	3
10	In Vivo MRI of Amyloid Plaques in a Cholesterol-Fed Rabbit Model of Alzheimer's Disease. Journal of Alzheimer's Disease, 2018, 64, 911-923.	1.2	9
11	Learning Anatomy: Using the Blooming Anatomy Tool to determine how course delivery and duration affect the performance of anatomy students. FASEB Journal, 2018, 32, 507.29.	0.2	0
12	Academic nightmares: Predatory publishing. Anatomical Sciences Education, 2017, 10, 392-394.	2.5	21
13	The skeletons in our closet: Eâ€learning tools and what happens when one side does not fit all. Anatomical Sciences Education, 2017, 10, 570-588.	2.5	8
14	Educational software usability: Artifact or Design?. Anatomical Sciences Education, 2017, 10, 190-199.	2.5	17
15	Eâ€learning, dualâ€task, and cognitive load: The anatomy of a failed experiment. Anatomical Sciences Education, 2016, 9, 186-196.	2.5	20
16	MRI and histopathologic study of a novel cholesterolâ€fed rabbit model of xanthogranuloma. Journal of Magnetic Resonance Imaging, 2016, 44, 673-682.	1.9	5
17	Mixed methods student evaluation of an online systemic human anatomy course with laboratory. Anatomical Sciences Education, 2016, 9, 272-285.	2.5	52
18	The anatomy of <scp>E</scp> â€Learning tools: Does software usability influence learning outcomes?. Anatomical Sciences Education, 2016, 9, 378-390.	2.5	31

#	Article	IF	CITATIONS
19	An In Vitro Hemodynamic Flow System to Study the Effects of Quantified Shear Stresses on Endothelial Cells. Cardiovascular Engineering and Technology, 2016, 7, 44-57.	0.7	14
20	Design and implementation of an online systemic human anatomy course with laboratory. Anatomical Sciences Education, 2015, 8, 53-62.	2.5	88
21	Effects of an Angiotensin II Type 1 Receptor Blocker on Aortic Valve Sclerosis in a Preclinical Model. Canadian Journal of Cardiology, 2014, 30, 1096-1103.	0.8	3
22	The development and assessment of an online microscopic anatomy laboratory course. Anatomical Sciences Education, 2013, 6, 246-256.	2.5	50
23	A Unique 3D In Vitro Cellular Invasion Assay. Journal of Biomolecular Screening, 2012, 17, 1088-1095.	2.6	13
24	Mimicking the Biomolecular Control of Calcium Oxalate Monohydrate Crystal Growth: Effect of Contiguous Glutamic Acids. Langmuir, 2012, 28, 12182-12190.	1.6	22
25	Angiotensin Receptor Blocker Has no Effect on Atherosclerotic Factors in AVS. , 2012, , .		0
26	A Comparison of Commercial Anatomy Educational Software. FASEB Journal, 2012, 26, 530.13.	0.2	0
27	Do Lectures Matter? Lecture Attendance in Online and Face to Face Histology Courses. FASEB Journal, 2012, 26, 528.5.	0.2	0
28	Statin treatment of hypercholesterolemic-induced aortic valve sclerosis. Cardiovascular Pathology, 2011, 20, 84-92.	0.7	17
29	Angiotensin II type 1 receptor blocker inhibits arterial calcification in a pre-clinical model. Cardiovascular Research, 2011, 90, 165-170.	1.8	53
30	The Assessment of an Online Microscopic Anatomy Laboratory Course. FASEB Journal, 2011, 25, 10.5.	0.2	0
31	Early identification of aortic valve sclerosis using iron oxide enhanced MRI. Journal of Magnetic Resonance Imaging, 2010, 31, 110-116.	1.9	11
32	Development of a synchronous online microscopic anatomy course using virtual microscopy. FASEB Journal, 2010, 24, 825.5.	0.2	0
33	Comparison of Gadofluorine-M and Gd-DTPA for Noninvasive Staging of Atherosclerotic Plaque Stability Using MRI. Circulation: Cardiovascular Imaging, 2009, 2, 226-234.	1.3	28
34	Enzyme-Sensitive Magnetic Resonance Imaging Targeting Myeloperoxidase Identifies Active Inflammation in Experimental Rabbit Atherosclerotic Plaques. Circulation, 2009, 120, 592-599.	1.6	151
35	Vascular Smooth Muscle Cells as a Valvular Interstitial Cell Surrogate in Heart Valve Tissue Engineering. Tissue Engineering - Part A, 2009, 15, 3889-3897.	1.6	14
36	Clinical field-strength MRI of amyloid plaques induced by low-level cholesterol feeding in rabbits. Brain, 2009, 132, 1346-1354.	3.7	16

#	Article	IF	CITATIONS
37	The in vivo diagnosis of earlyâ€stage aortic valve sclerosis using magnetic resonance imaging in a rabbit model. Journal of Magnetic Resonance Imaging, 2009, 29, 825-831.	1.9	4
38	Kinetics of Calcium Oxalate Crystal Growth in the Presence of Osteopontin Isoforms: An Analysis by Scanning Confocal Interference Microcopy. Calcified Tissue International, 2009, 84, 240-248.	1.5	34
39	Crystallization of Calcium Oxalates Is Controlled by Molecular Hydrophilicity and Specific Polyanion-Crystal Interactions. Langmuir, 2009, 25, 11635-11646.	1.6	46
40	Proliferation and extracellular matrix protein expression in vascular smooth muscle cells cultured for aortic valve tissue engineering. FASEB Journal, 2008, 22, 585.3.	0.2	0
41	Nitric Oxideâ€Mediated Growth Inhibition of an Endothelialized Tissue Engineered Aortic Valve. FASEB Journal, 2008, 22, .	0.2	0
42	Tissue Engineering the Aortic Valve Spongiosa Using Matrigelâ€Cellâ€Scaffoldâ€Composites (MCSCs). FASEB Journal, 2008, 22, 903.6.	0.2	1
43	Control of Calcium Oxalate Crystal Growth by Face-Specific Adsorption of an Osteopontin Phosphopeptide. Journal of the American Chemical Society, 2007, 129, 14946-14951.	6.6	124
44	Specific Adsorption of Osteopontin and Synthetic Polypeptides to Calcium Oxalate Monohydrate Crystals. Biophysical Journal, 2007, 93, 1768-1777.	0.2	81
45	MRI of early―and lateâ€stage arterial remodeling in a lowâ€level cholesterolâ€fed rabbit model of atherosclerosis. Journal of Magnetic Resonance Imaging, 2007, 26, 1010-1019.	1.9	12
46	Crystallization kinetics of calcium oxalate hydrates studied by scanning confocal interference microscopy. Journal of Crystal Growth, 2006, 295, 148-157.	0.7	37
47	The p110Î′ Isoform of PI3K Differentially Regulates β1 and β2 Integrinâ€Mediated Monocyte Adhesion and Spreading and Modulates Diapedesis. Microcirculation, 2006, 13, 439-456.	1.0	51
48	Radial artery as an autologous cell source for valvular tissue engineering efforts. Journal of Biomedical Materials Research - Part A, 2006, 78A, 383-393.	2.1	5
49	Interleukin-1Î ² Reduces Transcellular Monocyte Diapedesis and Compromises Endothelial Adherens Junction Integrity. Microcirculation, 2005, 12, 563-579.	1.0	24
50	Dermal fibroblasts cultured on small intestinal submucosa: Conditions for the formation of a neotissue. Journal of Biomedical Materials Research - Part A, 2005, 75A, 895-906.	2.1	17
51	Development of aortic valve sclerosis in a rabbit model of atherosclerosis: an immunohistochemical and histological study. Journal of Heart Valve Disease, 2005, 14, 365-75.	0.5	35
52	Smoothelin-positive cells in human and porcine semilunar valves. Histochemistry and Cell Biology, 2003, 120, 307-317.	0.8	37
53	Embryonic and fetal rat myoblasts form different muscle fiber types in an ectopic in vivo environment. Developmental Dynamics, 2002, 224, 253-266.	0.8	23
54	Aortic valve interstitial cells: an evaluation of cell viability and cell phenotype over time. Journal of Heart Valve Disease, 2002, 11, 881-7.	0.5	8

#	Article	IF	CITATIONS
55	α5β1 Integrin Expression and Luminal Edge Fibronectin Matrix Assembly by Smooth Muscle Cells after Arterial Injury. American Journal of Pathology, 2000, 156, 453-465.	1.9	83
56	Transendothelial Migration of Monocytes in Rat Aorta: Distribution of F-actin, α-Catenin, LFA-1, and PECAM-1. Biotechnic and Histochemistry, 1999, 74, 276-293.	0.7	21
57	Human sympathetic preganglionic neurons and motoneurons retrogradely labelled with Dil. Journal of the Autonomic Nervous System, 1998, 70, 123-128.	1.9	11
58	Dietary Fish Oil. Arteriosclerosis, Thrombosis, and Vascular Biology, 1997, 17, 688-694.	1.1	33
59	Differential expression of gap junctions in neurons and astrocytes derived from P19 embryonal carcinoma cells. , 1997, 21, 187-200.		33
60	Cellular localization of P-glycoprotein in brain versus gonadal capillaries Journal of Histochemistry and Cytochemistry, 1996, 44, 679-685.	1.3	77
61	Probucol, but not MaxEPA fish oil, inhibits mononuclear cell adhesion to the aortic intima in the rat model of atherosclerosis. Biochemistry and Cell Biology, 1995, 73, 283-288.	0.9	8
62	Cholesterol-fed and casein-fed rabbit models of atherosclerosis. Part 1: Differing lesion area and volume despite equal plasma cholesterol levels Arteriosclerosis and Thrombosis: A Journal of Vascular Biology, 1994, 14, 95-104.	3.8	55
63	Vascularization and microvascular permeability in solid versus cell-suspension embryonic neural grafts. Journal of Neurosurgery, 1994, 81, 272-283.	0.9	58
64	n-3 fatty acid incorporation into LDL particles renders them more susceptible to oxidation in vitro but not necessarily more atherogenic in vivo Arteriosclerosis and Thrombosis: A Journal of Vascular Biology, 1994, 14, 1170-1176.	3.8	43
65	The distribution of fibro-fatty atherosclerotic lesions in the aortae of casein- and cholesterol-fed rabbits. Atherosclerosis, 1993, 99, 121-131.	0.4	22
66	The distribution of centrosomes in migrating endothelial cells during wound healing <i>in situ</i> . Biochemistry and Cell Biology, 1992, 70, 1135-1141.	0.9	10
67	Effects of injection mechanics, pH of infusate and 6-hyroxydopamine on cerebromicrovascular permeability in rats. Brain Research, 1991, 539, 271-275.	1.1	4
68	The distribution of microfilament bundles in rabbit endothelial cells in the intact aorta and during wound healing <i>in situ</i> . Biochemistry and Cell Biology, 1989, 67, 553-562.	0.9	18
69	The distribution of centrosomes in endothelial cells of non-wounded and wounded aortic organ cultures. Cell and Tissue Research, 1986, 243, 223-7.	1.5	25
70	Preferential orientation of centrioles toward the heart in endothelial cells of major blood vessels is reestablished after reversal of a segment Proceedings of the National Academy of Sciences of the United States of America, 1985, 82, 3272-3276.	3.3	60
71	A method for examining the endothelial cytoskeleton in situ using immunofluorescence Journal of Histochemistry and Cytochemistry, 1983, 31, 1317-1320.	1.3	20
72	Retinoic acid induces embryonal carcinoma cells to differentiate into neurons and glial cells Journal of Cell Biology, 1982, 94, 253-262.	2.3	771

#	Article	IF	CITATIONS
73	Microtubules, colchicine, and lymphocyte blastogenesis. Canadian Journal of Biochemistry, 1979, 57, 673-683.	1.4	21
74	Hydrostatic pressure-induced internalization of flagellar axonemes, disassembly, and reutilization during flagellar regeneration in Polytomella. Experimental Cell Research, 1978, 117, 313-324.	1.2	29