
Wolfram Schlenker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5378339/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Climate Trends and Global Crop Production Since 1980. Science, 2011, 333, 616-620.	12.6	3,040
2	Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 15594-15598.	7.1	2,237
3	Robust negative impacts of climate change on African agriculture. Environmental Research Letters, 2010, 5, 014010.	5.2	979
4	Greater Sensitivity to Drought Accompanies Maize Yield Increase in the U.S. Midwest. Science, 2014, 344, 516-519.	12.6	779
5	The critical role of extreme heat for maize production in the United States. Nature Climate Change, 2013, 3, 497-501.	18.8	706
6	Will U.S. Agriculture Really Benefit from Global Warming? Accounting for Irrigation in the Hedonic Approach. American Economic Review, 2005, 95, 395-406.	8.5	416
7	Using Weather Data and Climate Model Output in Economic Analyses of Climate Change. Review of Environmental Economics and Policy, 2013, 7, 181-198.	7.0	380
8	Airports, Air Pollution, and Contemporaneous Health. Review of Economic Studies, 2016, 83, 768-809.	5.4	357
9	The Impact of Global Warming on U.S. Agriculture: An Econometric Analysis of Optimal Growing Conditions. Review of Economics and Statistics, 2006, 88, 113-125.	4.3	350
10	The Economic Impacts of Climate Change: Evidence from Agricultural Output and Random Fluctuations in Weather: Comment. American Economic Review, 2012, 102, 3749-3760.	8.5	334
11	Consistent negative response of US crops to high temperatures in observations and crop models. Nature Communications, 2017, 8, 13931.	12.8	321
12	Identifying Supply and Demand Elasticities of Agricultural Commodities: Implications for the US Ethanol Mandate. American Economic Review, 2013, 103, 2265-2295.	8.5	233
13	Nonlinear Effects of Weather on Corn Yields*. Applied Economic Perspectives and Policy, 2006, 28, 391-398.	1.0	186
14	Asylum applications respond to temperature fluctuations. Science, 2017, 358, 1610-1614.	12.6	171
15	Water Availability, Degree Days, and the Potential Impact of Climate Change on Irrigated Agriculture in California. Climatic Change, 2007, 81, 19-38.	3.6	145
16	Comparing and combining process-based crop models and statistical models with some implications for climate change. Environmental Research Letters, 2017, 12, 095010.	5.2	124
17	Federal Crop Insurance and the Disincentive to Adapt to Extreme Heat. American Economic Review, 2015, 105, 262-266.	8.5	123
18	Projected temperature changes indicate significant increase in interannual variability of U.S. maize yields. Climatic Change, 2012, 112, 525-533.	3.6	121

WOLFRAM SCHLENKER

#	Article	IF	CITATIONS
19	The Use of Panel Models in Assessments of Climate Impacts on Agriculture. Review of Environmental Economics and Policy, 2017, 11, 258-279.	7.0	115
20	Agronomic Weather Measures in Econometric Models of Crop Yield with Implications for Climate Change. American Journal of Agricultural Economics, 2013, 95, 236-243.	4.3	114
21	Empirical studies on agricultural impacts and adaptation. Energy Economics, 2014, 46, 555-561.	12.1	110
22	The Impact of Global Warming on U.S. Agriculture: An Econometric Analysis of Optimal Growing Conditions. Review of Economics and Statistics, 2006, 88, 113-125.	4.3	102
23	Recent weather fluctuations and agricultural yields: implications for climate change. Agricultural Economics (United Kingdom), 2016, 47, 159-171.	3.9	60
24	The effects of extremely wet planting conditions on maize and soybean yields. Climatic Change, 2015, 130, 247-260.	3.6	57
25	Violent conflict exacerbated drought-related food insecurity between 2009 and 2019 in sub-Saharan Africa. Nature Food, 2021, 2, 603-615.	14.0	51
26	Sustainable fisheries. Nature, 2008, 455, 1044-1045.	27.8	49
27	Quantifying the impacts of compound extremes on agriculture. Hydrology and Earth System Sciences, 2021, 25, 551-564.	4.9	45
28	US maize adaptability. Nature Climate Change, 2013, 3, 690-691.	18.8	35
29	The Effects of Extreme Weather on Apple Quality. Scientific Reports, 2020, 10, 7919.	3.3	33
30	Fisheries Management Under Cyclical Population Dynamics. Environmental and Resource Economics, 2009, 42, 379-410.	3.2	32
31	Balancing economic and ecological goals. Science, 2016, 353, 651-652.	12.6	29
32	Asylum Applications and Migration Flows. American Economic Review, 2017, 107, 436-440.	8.5	13
33	lt's not just the statistical model. A comment on Seo (2013). Climatic Change, 2013, 121, 125-128.	3.6	5
34	Climate and Crop Yields in Australia, Brazil, China, Europe and the United States. SSRN Electronic Journal, 2013, , .	0.4	5
35	Why Climate Change Impacts on Agriculture Could be Economically Substantial. , 2010, , 47-75.		2
36	Reply to Meerburg et al: Growing Areas in Brazil and the United States with Similar Exposure to Extreme Heat Have Similar Yields - Appendix. SSRN Electronic Journal, 0, , .	0.4	1