List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5378215/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis and Evaluation of Structurally Diverse C-2-Substituted Thienopyrimidine-Based Inhibitors of the Human Geranylgeranyl Pyrophosphate Synthase. Journal of Medicinal Chemistry, 2022, 65, 2471-2496.	2.9	5
2	Rh(I)-catalyzed asymmetric transfer hydrogenation of α-enamidophosphonates to α-aminophosphonates. Tetrahedron, 2022, , 132908.	1.0	1
3	Copper-boryl mediated transfer hydrogenation of N-sulfonyl imines using methanol as the hydrogen donor. Tetrahedron, 2021, 85, 132063.	1.0	6
4	<i>P</i> -Chiral, <i>N</i> -phosphoryl sulfonamide BrÃ,nsted acids with an intramolecular hydrogen bond interaction that modulates organocatalysis. Organic and Biomolecular Chemistry, 2019, 17, 8690-8694.	1.5	13
5	Chirality-Driven Mode of Binding of α-Aminophosphonic Acid-Based Allosteric Inhibitors of the Human Farnesyl Pyrophosphate Synthase (hFPPS). Journal of Medicinal Chemistry, 2019, 62, 9691-9702.	2.9	10
6	Asymmetric Library Synthesis of P-Chiral t-Butyl-Substituted Secondary and Tertiary Phosphine Oxides. Journal of Organic Chemistry, 2019, 84, 7291-7302.	1.7	16
7	Inhibition of farnesyl pyrophosphate (FPP) and/or geranylgeranyl pyrophosphate (GGPP) biosynthesis and its implication in the treatment of cancers. Critical Reviews in Biochemistry and Molecular Biology, 2019, 54, 41-60.	2.3	52
8	Isoprenoids and tau pathology in sporadic Alzheimer's disease. Neurobiology of Aging, 2018, 65, 132-139.	1.5	24
9	Pharmacophore requirements for HIV-1 reverse transcriptase inhibitors that selectively "Freeze―the pre-translocated complex during the polymerization catalytic cycle. Bioorganic and Medicinal Chemistry, 2018, 26, 1713-1726.	1.4	8
10	Molecular tools that block maturation of the nuclear lamin A and decelerate cancer cell migration. Bioorganic and Medicinal Chemistry, 2018, 26, 5547-5554.	1.4	13
11	Unraveling the Prenylation–Cancer Paradox in Multiple Myeloma with Novel Geranylgeranyl Pyrophosphate Synthase (GGPPS) Inhibitors. Journal of Medicinal Chemistry, 2018, 61, 6904-6917.	2.9	33
12	Human farnesyl pyrophosphate synthase is allosterically inhibited by its own product. Nature Communications, 2017, 8, 14132.	5.8	32
13	Metal-Free Cycloetherification by in Situ Generated <i>P</i> -Stereogenic α-Diazanium Intermediates: A Convergent Synthesis of Enantiomerically Pure Dihydrobenzooxaphospholes. Organic Letters, 2017, 19, 894-897.	2.4	4
14	Pharmacophore Mapping of Thienopyrimidine-Based Monophosphonate (ThP-MP) Inhibitors of the Human Farnesyl Pyrophosphate Synthase. Journal of Medicinal Chemistry, 2017, 60, 2119-2134.	2.9	21
15	Crystallographic and thermodynamic characterization of phenylaminopyridine bisphosphonates binding to human farnesyl pyrophosphate synthase. PLoS ONE, 2017, 12, e0186447.	1.1	5
16	A Covalent Cysteineâ€Targeting Kinase Inhibitor of Ire1 Permits Allosteric Control of Endoribonuclease Activity. ChemBioChem, 2016, 17, 843-851.	1.3	13
17	Synthesis of Benzothiopheneâ€Containing 10―and 11â€Membered Cyclic Phostones. European Journal of Organic Chemistry, 2016, 2016, 3728-3736.	1.2	5
18	Aligning Potency and Pharmacokinetic Properties for Pyridine-Based NCINIs. ACS Medicinal Chemistry Letters, 2016, 7, 797-801.	1.3	18

#	Article	IF	CITATIONS
19	Mutant lamin A links prophase to a p53 independent senescence program. Cell Cycle, 2015, 14, 2408-2421.	1.3	17
20	Probing the molecular and structural elements of ligands binding to the active site versus an allosteric pocket of the human farnesyl pyrophosphate synthase. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 1117-1123.	1.0	15
21	Concise and Practical Asymmetric Synthesis of a Challenging Atropisomeric HIV Integrase Inhibitor. Angewandte Chemie - International Edition, 2015, 54, 7144-7148.	7.2	50
22	Human isoprenoid synthase enzymes as therapeutic targets. Frontiers in Chemistry, 2014, 2, 50.	1.8	37
23	Preclinical Profile of BI 224436, a Novel HIV-1 Non-Catalytic-Site Integrase Inhibitor. Antimicrobial Agents and Chemotherapy, 2014, 58, 3233-3244.	1.4	88
24	Structure of human farnesyl pyrophosphate synthase in complex with an aminopyridine bisphosphonate and two molecules of inorganic phosphate. Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 299-304.	0.4	9
25	Conformation-Based Restrictions and Scaffold Replacements in the Design of Hepatitis C Virus Polymerase Inhibitors: Discovery of Deleobuvir (BI 207127). Journal of Medicinal Chemistry, 2014, 57, 1845-1854.	2.9	32
26	Modular Assembly of Purine-like Bisphosphonates as Inhibitors of HIV-1 Reverse Transcriptase. Journal of Medicinal Chemistry, 2014, 57, 7435-7449.	2.9	39
27	Minimizing the Contribution of Enterohepatic Recirculation to Clearance in Rat for the NCINI Class of Inhibitors of HIV. ACS Medicinal Chemistry Letters, 2014, 5, 711-716.	1.3	15
28	A Highly Concise and Convergent Synthesis of HCV Polymerase Inhibitor Deleobuvir (BI 207127): Application of a One-Pot Borylation–Suzuki Coupling Reaction. Organic Letters, 2014, 16, 4558-4561.	2.4	9
29	Discovery of Bl 224436, a Noncatalytic Site Integrase Inhibitor (NCINI) of HIV-1. ACS Medicinal Chemistry Letters, 2014, 5, 422-427.	1.3	139
30	Multistage Screening Reveals Chameleon Ligands of the Human Farnesyl Pyrophosphate Synthase: Implications to Drug Discovery for Neurodegenerative Diseases. Journal of Medicinal Chemistry, 2014, 57, 5764-5776.	2.9	29
31	Thienopyrimidine Bisphosphonate (ThPBP) Inhibitors of the Human Farnesyl Pyrophosphate Synthase: Optimization and Characterization of the Mode of Inhibition. Journal of Medicinal Chemistry, 2013, 56, 7939-7950.	2.9	43
32	Discovery of thienopyrimidine-based inhibitors of the human farnesyl pyrophosphate synthase—Parallel synthesis of analogs via a trimethylsilyl ylidene intermediate. Bioorganic and Medicinal Chemistry, 2013, 21, 2229-2240.	1.4	30
33	Discovery of a novel series of non-nucleoside thumb pocket 2 HCV NS5B polymerase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 2585-2589.	1.0	19
34	Discovery of the First Thumb Pocket 1 NS5B Polymerase Inhibitor (BILB 1941) with Demonstrated Antiviral Activity in Patients Chronically Infected with Genotype 1 Hepatitis C Virus (HCV). Journal of Medicinal Chemistry, 2012, 55, 7650-7666.	2.9	43
35	Ternary complex structures of human farnesyl pyrophosphate synthase bound with a novel inhibitor and secondary ligands provide insights into the molecular details of the enzyme's active site closure. BMC Structural Biology, 2012, 12, 32.	2.3	21
36	Design of potent bisphosphonate inhibitors of the human farnesyl pyrophosphate synthase via targeted interactions with the active site †̃capping' phenyls. Bioorganic and Medicinal Chemistry, 2012, 20, 5583-5591.	1.4	14

#	Article	IF	CITATIONS
37	Design and Synthesis of Active Site Inhibitors of the Human Farnesyl Pyrophosphate Synthase: Apoptosis and Inhibition of ERK Phosphorylation in Multiple Myeloma Cells. Journal of Medicinal Chemistry, 2012, 55, 3201-3215.	2.9	46
38	Indole 5-carboxamide Thumb Pocket I inhibitors of HCV NS5B polymerase with nanomolar potency in cell-based subgenomic replicons (part 2): Central amino acid linker and right-hand-side SAR studies. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 3664-3670.	1.0	10
39	Novel bisphosphonate inhibitors of the human farnesyl pyrophosphate synthase. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 5781-5786.	1.0	13
40	Importance of Ligand Bioactive Conformation in the Discovery of Potent Indole-Diamide Inhibitors of the American Chemical Society, 2010, 132, 15204-15212.	6.6	36
41	TMC-435, an NS3/4A protease inhibitor for the treatment of HCV infection. Current Opinion in Investigational Drugs, 2009, 10, 871-81.	2.3	12
42	Peptidomimetic Therapeutic Agents Targeting the Protease Enzyme of the Human Immunodeficiency Virus and Hepatitis C Virus. Accounts of Chemical Research, 2008, 41, 1252-1263.	7.6	104
43	Olefin ring-closing metathesis as a powerful tool in drug discovery and development – potent macrocyclic inhibitors of the hepatitis C virus NS3 protease. Journal of Organometallic Chemistry, 2006, 691, 5163-5171.	0.8	48
44	RCM of Tripeptide Dienes Containing a Chiral Vinylcyclopropane Moiety:Â Impact of Different Ru-Based Catalysts on the Stereochemical Integrity of the Macrocyclic Products. Journal of Organic Chemistry, 2005, 70, 10765-10773.	1.7	47
45	Synthesis of novel analogs of aromatic peptide nucleic acids (APNAs) with modified conformational and electrostatic properties. Tetrahedron, 2004, 60, 2235-2246.	1.0	11
46	Synthesis of BILN 2061, an HCV NS3 Protease Inhibitor with Proven Antiviral Effect in Humans. Organic Letters, 2004, 6, 2901-2904.	2.4	104
47	Potent Inhibitors of the Hepatitis C Virus NS3 Protease:Â Design and Synthesis of Macrocyclic Substrate-Based β-Strand Mimics. Journal of Organic Chemistry, 2004, 69, 6185-6201.	1.7	59
48	Structureâ^'Activity Study on a Novel Series of Macrocyclic Inhibitors of the Hepatitis C Virus NS3 Protease Leading to the Discovery of BILN 2061. Journal of Medicinal Chemistry, 2004, 47, 1605-1608.	2.9	189
49	Title is missing!. Angewandte Chemie, 2003, 115, 1394-1398.	1.6	25
50	Macrocyclic Inhibitors of the NS3 Protease as Potential Therapeutic Agents of Hepatitis C Virus Infection. Angewandte Chemie - International Edition, 2003, 42, 1356-1360.	7.2	166
51	An NS3 protease inhibitor with antiviral effects in humans infected with hepatitis C virus. Nature, 2003, 426, 186-189.	13.7	881
52	Hybridization Properties of Aromatic Peptide Nucleic Acids:  A Novel Class of Oligonucleotide Analogues. Organic Letters, 2002, 4, 63-66.	2.4	11
53	Solid-Phase Synthesis of Peptidomimetic Inhibitors for the Hepatitis C Virus NS3 Protease. Journal of Organic Chemistry, 2001, 66, 4743-4751.	1.7	64
54	Backbone Modifications of Aromatic Peptide Nucleic Acid (APNA) Monomers and Their Hybridization Properties with DNA and RNA. Journal of Organic Chemistry, 2001, 66, 3372-3379.	1.7	18

#	Article	IF	CITATIONS
55	Studies on the Biosynthesis of the Fungal Metabolite Oudenone. 2. Synthesis and Enzymatic Cyclization of an α-Diketone, Open-Chain Precursor into Oudenone in Cultures ofOudemansiellaradicata. Journal of Organic Chemistry, 1999, 64, 6609-6614.	1.7	16
56	Stereoselective Synthesis of a Thymine Derivative of (S)-2-Hydroxy-4-(2-aminophenyl)butanoic Acid. A Novel Building Block for the Synthesis of Aromatic Peptidic Nucleic Acid Oligomers1. Journal of Organic Chemistry, 1997, 62, 5451-5457.	1.7	32
57	Synthesis of a novel 1,4-bridged calix[8]arene "Host―cavity. Tetrahedron Letters, 1997, 38, 5411-5414.	0.7	10
58	Aristolochene Synthase. Elucidation of the Cryptic Germacrene A Synthase Activity Using the Anomalous Substrate Dihydrofarnesyl Diphosphate. Journal of the American Chemical Society, 1996, 118, 10037-10040.	6.6	54
59	Enzymatic Formation of Isochamigrene, a Novel Sesquiterpene, by Alteration of the Aspartate-Rich Region of Trichodiene Synthase. Journal of the American Chemical Society, 1996, 118, 8499-8500.	6.6	35
60	Structural Assignment of the Peptide Antibiotic LP237-F8, a Metabolite ofTolypocladium geodes. Journal of Organic Chemistry, 1996, 61, 2118-2121.	1.7	25
61	Peptaibol metabolites of Tolypocladium geodes. Canadian Journal of Chemistry, 1996, 74, 165-172.	0.6	34
62	Bioactive metabolites of the genus Phomopsis. Studies in Natural Products Chemistry, 1995, 15, 341-359.	0.8	2
63	Biosynthesis of the Hypotensive Metabolite Oudenone by Oudemansiella radicata. 1. Intact Incorporation of a Tetraketide Chain Elongation Intermediate. Journal of Organic Chemistry, 1995, 60, 6922-6929.	1.7	22
64	Novel quinazolinones and enniatins from Fusarium lateritium Nees. Canadian Journal of Chemistry, 1993, 71, 1362-1367.	0.6	33
65	Phytotoxic metabolites of Phomopsisconvolvulus, a host-specific pathogen of field bindweed. Canadian Journal of Chemistry, 1992, 70, 2276-2284.	0.6	48
66	Approaches towards the synthesis of a sulfur analog of ergosterol peroxide. Canadian Journal of Chemistry, 1992, 70, 158-164.	0.6	18
67	Determination of the absolute stereochemistry of the fungal metabolite (R)-(â^')-2-(4′-hydroxyphenyl)-2-hydroxyethanoic acid (pisolithin B). Canadian Journal of Chemistry, 1991, 69, 772-778.	0.6	11
68	Antifungal antibiotics from Pisolithus tinctorius. Phytochemistry, 1991, 30, 1113-1118.	1.4	28
69	β-Lactams. IX. The synthesis of 7-β-phenylacetamido-3′-hydroxybenzo-[3,4]-O-2-isocephem, a weak antibacterial β-lactam antibiotic. Canadian Journal of Chemistry, 1981, 59, 2981-2987.	0.6	8
70	C-Nucleosides and related compounds. XV. The synthesis of D,L-2′-epi-showdomycin and D,L-showdomycin. Canadian Journal of Chemistry, 1980, 58, 2024-2033.	0.6	44