Robert S Sloviter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5378004/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Targeted hippocampal GABA neuron ablation by Stable Substance P–saporin causes hippocampal sclerosis and chronic epilepsy in rats. Epilepsia, 2019, 60, e52-e57.	2.6	10
2	Commonalities in epileptogenic processes from different acute brain insults: Do they translate?. Epilepsia, 2018, 59, 37-66.	2.6	206
3	No latency to dentate granule cell epileptogenesis in experimental temporal lobe epilepsy with hippocampal sclerosis. Epilepsia, 2018, 59, 2019-2034.	2.6	19
4	Transcriptional profile of hippocampal dentate granule cells in four rat epilepsy models. Scientific Data, 2017, 4, 170061.	2.4	47
5	Epileptogenesis meets Occam's Razor. Current Opinion in Pharmacology, 2017, 35, 105-110.	1.7	9
6	Epileptic pilocarpineâ€ŧreated rats exhibit aberrant hippocampal EPSPâ€spike potentiation but retain longâ€ŧerm potentiation. Physiological Reports, 2017, 5, e13490.	0.7	9
7	Defining "epileptogenesis―and identifying "antiepileptogenic targets―in animal models of acquired temporal lobe epilepsy is not as simple as it might seem. Neuropharmacology, 2013, 69, 3-15.	2.0	90
8	Standardized Environmental Enrichment Supports Enhanced Brain Plasticity in Healthy Rats and Prevents Cognitive Impairment in Epileptic Rats. PLoS ONE, 2013, 8, e53888.	1.1	115
9	Updating the Lamellar Hypothesis of Hippocampal Organization. Frontiers in Neural Circuits, 2012, 6, 102.	1.4	60
10	Progress on the issue of excitotoxic injury modification vs. real neuroprotection; implications for post-traumatic epilepsy. Neuropharmacology, 2011, 61, 1048-1050.	2.0	20
11	Electrical stimulation-induced seizures in rats: A "dose-response―study on resultant neurodegeneration. Epilepsia, 2011, 52, e109-e112.	2.6	19
12	Classic hippocampal sclerosis and hippocampalâ€onset epilepsy produced by a single "cryptic―episode of focal hippocampal excitation in awake rats. Journal of Comparative Neurology, 2010, 518, 3381-3407.	0.9	68
13	Abnormal dentate gyrus network circuitry in temporal lobe epilepsy. Epilepsia, 2010, 51, 41-41.	2.6	6
14	Hippocampal injury, atrophy, synaptic reorganization, and epileptogenesis after perforant pathway stimulationâ€induced status epilepticus in the mouse. Journal of Comparative Neurology, 2009, 515, 181-196.	0.9	63
15	Experimental status epilepticus in animals: What are we modeling?. Epilepsia, 2009, 50, 11-13.	2.6	36
16	Minimal latency to hippocampal epileptogenesis and clinical epilepsy after perforant pathway stimulationâ€induced status epilepticus in awake rats. Journal of Comparative Neurology, 2008, 510, 561-580.	0.9	74
17	Hippocampal epileptogenesis in animal models of mesial temporal lobe epilepsy with hippocampal sclerosis: The importance of the "latent period―and other concepts. Epilepsia, 2008, 49, 85-92. 	2.6	99
18	On the relevance of prolonged convulsive status epilepticus in animals to the etiology and neurobiology of human temporal lobe epilepsy. Epilepsia, 2007, 48, 6-10.	2.6	192

ROBERT S SLOVITER

#	Article	IF	CITATIONS
19	Synapses formed by normal and abnormal hippocampal mossy fibers. Cell and Tissue Research, 2006, 326, 361-367.	1.5	60
20	Kainic acid-induced recurrent mossy fiber innervation of dentate gyrus inhibitory interneurons: Possible anatomical substrate of granule cell hyperinhibition in chronically epileptic rats. Journal of Comparative Neurology, 2006, 494, 944-960.	0.9	126
21	Neuronal hyperactivity induces astrocytic expression of neurocan in the adult rat hippocampus. Glia, 2006, 53, 704-714.	2.5	24
22	Hippocampal granule cell activity and c-Fos expression during spontaneous seizures in awake, chronically epileptic, pilocarpine-treated rats: Implications for hippocampal epileptogenesis. Journal of Comparative Neurology, 2005, 488, 442-463.	0.9	95
23	The neurobiology of temporal lobe epilepsy: too much information, not enough knowledge. Comptes Rendus - Biologies, 2005, 328, 143-153.	0.1	110
24	Synaptic Activity Regulates Interstitial Fluid Amyloid-Î ² Levels In Vivo. Neuron, 2005, 48, 913-922.	3.8	1,060
25	Translamellar Disinhibition in the Rat Hippocampal Dentate Gyrus after Seizure-Induced Degeneration of Vulnerable Hilar Neurons. Journal of Neuroscience, 2004, 24, 853-864.	1.7	80
26	"Tectonic―hippocampal malformations in patients with temporal lobe epilepsy. Epilepsy Research, 2004, 59, 123-153.	0.8	51
27	?Dormant basket cell? hypothesis revisited: Relative vulnerabilities of dentate gyrus mossy cells and inhibitory interneurons after hippocampal status epilepticus in the rat. Journal of Comparative Neurology, 2003, 459, 44-76.	0.9	203
28	Excitatory Dentate Granule Cells Normally Contain GAD and GABA, but Does That Make Them GABAergic, and Do Seizures Shift Granule Cell Function in the Inhibitory Direction?. Epilepsy Currents, 2003, 3, 3-5.	0.4	10
29	Impaired retention of spatial memory after transection of longitudinally oriented axons of hippocampal CA3 pyramidal cells. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 3194-3198.	3.3	116
30	Apoptosis: a guide for the perplexed. Trends in Pharmacological Sciences, 2002, 23, 19-24.	4.0	106
31	Apoptosis: a needed return to first principles. Trends in Pharmacological Sciences, 2002, 23, 310.	4.0	Ο
32	Substance P receptor expression by inhibitory interneurons of the rat hippocampus: Enhanced detection using improved immunocytochemical methods for the preservation and colocalization of GABA and other neuronal markers. Journal of Comparative Neurology, 2001, 430, 283-305.	0.9	84
33	Focal inhibitory interneuron loss and principal cell hyperexcitability in the rat hippocampus after microinjection of a neurotoxic conjugate of saporin and a peptidase-resistant analog of Substance P. Journal of Comparative Neurology, 2001, 436, 127-152.	0.9	44
34	Commissurally projecting inhibitory interneurons of the rat hippocampal dentate gyrus: A colocalization study of neuronal markers and the retrograde tracer fluoro-gold. Journal of Comparative Neurology, 2001, 441, 324-344.	0.9	71
35	Status Epilepticus-induced Neuronal Injury and Network Reorganization. Epilepsia, 1999, 40, s34-s39.	2.6	142
36	Dentate Granule Cell Neurogenesis Is Increased by Seizures and Contributes to Aberrant Network Reorganization in the Adult Rat Hippocampus. Journal of Neuroscience, 1997, 17, 3727-3738.	1.7	1,744

ROBERT S SLOVITER

#	Article	IF	CITATIONS
37	Apoptosis and necrosis induced in different hippocampal neuron populations by repetitive perforant path stimulation in the rat. , 1996, 366, 516-533.		192
38	Basal expression and induction of glutamate decarboxylase GABA in excitatory granule cells of the rat and monkey hippocampal dentate gyrus. Journal of Comparative Neurology, 1996, 373, 593-618.	0.9	277
39	Basal expression and induction of glutamate decarboxylase GABA in excitatory granule cells of the rat and monkey hippocampal dentate gyrus. , 1996, 373, 593.		178
40	Hippocampal dentate granule cell degeneration after adrenalectomy in the rat is not reversed by dexamethasone. Brain Research, 1995, 682, 227-230.	1.1	34
41	Lateral inhibition and granule cell synchrony in the rat hippocampal dentate gyrus. Journal of Neuroscience, 1995, 15, 811-820.	1.7	48
42	Images in neuroscience. The hippocampus in epilepsy. American Journal of Psychiatry, 1995, 152, 659-659.	4.0	6
43	On the relationship between neuropathology and pathophysiology in the epileptic hippocampus of humans and experimental animals. Hippocampus, 1994, 4, 250-253.	0.9	59
44	The functional organization of the hippocampal dentate gyrus and its relevance to the pathogenesis of temporal lobe epilepsy. Annals of Neurology, 1994, 35, 640-654.	2.8	427
45	Learning and memory after adrenalectomy-induced hippocampal dentate granule cell degeneration in the rat. Hippocampus, 1993, 3, 359-371.	0.9	45
46	Adrenalectomy-induced granule cell degeneration in the rat hippocampal dentate gyrus: Characterization of an in vivo model of controlled neuronal death. Journal of Comparative Neurology, 1993, 330, 324-336.	0.9	200
47	Electron microscopic analysis of adrenalectomy-induced hippocampal granule cell degeneration in the rat: Apoptosis in the adult central nervous system. Journal of Comparative Neurology, 1993, 330, 337-351.	0.9	210
48	Cocaine neurotoxicity and altered neuropeptide Y immunoreactivity in the rat hippocampus; a silver degeneration and immunocytochemical study. Brain Research, 1993, 616, 263-272.	1.1	45
49	Calbindin-D28k immunoreactivity and selective vulnerability to ischemia in the dentate gyrus of the developing rat. Brain Research, 1993, 606, 309-314.	1.1	95
50	Possible functional consequences of synaptic reorganization in the dentate gyrus of kainate-treated rats. Neuroscience Letters, 1992, 137, 91-96.	1.0	362
51	Heat shock protein expression in vulnerable cells of the rat hippocampus as an indicator of excitation-induced neuronal stress. Journal of Neuroscience, 1992, 12, 3004-3009.	1.7	153
52	Evidence for commissurally projecting parvalbumin-immunoreactive basket cells in the dentate gyrus of the rat. Hippocampus, 1992, 2, 13-21.	0.9	46
53	Calcium-binding protein (calbindin-D28K) and parvalbumin immunocytochemistry in the normal and epileptic human hippocampus. Journal of Comparative Neurology, 1991, 308, 381-396.	0.9	322
54	Feedforward and feedback inhibition of hippocampal principal cell activity evoked by perforant path stimulation: GABA-mediated mechanisms that regulate excitabilityIn Vivo. Hippocampus, 1991, 1, 31-40.	0.9	214

ROBERT S SLOVITER

#	Article	IF	CITATIONS
55	Permanently altered hippocampal structure, excitability, and inhibition after experimental status epilepticus in the rat: The ?dormant basket cell? hypothesis and its possible relevance to temporal lobe epilepsy. Hippocampus, 1991, 1, 41-66.	0.9	662
56	Chapter 20 Similarities in circuitry between Ammon's horn and dentate gyrus: local interactions and parallel processing. Progress in Brain Research, 1990, 83, 269-286.	0.9	47
57	Selective loss of hippocampal granule cells in the mature rat brain after adrenalectomy. Science, 1989, 243, 535-538.	6.0	525
58	Calcium-binding protein (calbindin-D28k) and parvalbumin immunocytochemistry: Localization in the rat hippocampus with specific reference to the selective vulnerability of hippocampal neurons to seizure activity. Journal of Comparative Neurology, 1989, 280, 183-196.	0.9	671
59	Decreased hippocampal inhibition and a selective loss of interneurons in experimental epilepsy. Science, 1987, 235, 73-76.	6.0	1,014
60	Immunocytochemical localization of GABA-, cholecystokinin-, vasoactive intestinal polypeptide-, and somatostatin-like immunoreactivity in the area dentata and hippocampus of the rat. Journal of Comparative Neurology, 1987, 256, 42-60.	0.9	386
61	On the role of seizure activity in the hippocampal damage produced by trimethyltin. Brain Research, 1986, 367, 169-182.	1.1	31
62	A selective loss of hippocampal mossy fiber Timm stain accompanies granule cell seizure activity induced by perforant path stimulation. Brain Research, 1985, 330, 150-153.	1.1	179
63	"Epileptic―brain damage is replicated qualitatively in the rat hippocampus by central injection of glutamate or aspartate but not by GABA or acetylcholine. Brain Research Bulletin, 1985, 15, 39-60.	1.4	230
64	"Epileptic―brain damage in rats induced by sustained electrical stimulation of the perforant path. I. Acute electrophysiological and light microscopic studies. Brain Research Bulletin, 1983, 10, 675-697.	1.4	541
65	"Epileptic―brain damage in rats induced by sustained electrical stimulation of the perforant path. II. Ultrastructural analysis of acute hippocampal pathology. Brain Research Bulletin, 1983, 10, 699-712.	1.4	163
66	A simplified timm stain procedure compatible with formaldehyde fixation and routine paraffin embedding of rat brain. Brain Research Bulletin, 1982, 8, 771-774.	1.4	217
67	On the relationship between kainic acid-induced epileptiform activity and hippocampal neuronal damage. Neuropharmacology, 1981, 20, 1003-1011.	2.0	148
68	Methionine enkephalin-induced shaking behavior in rats: Dissociation from brain serotonin mechanisms. Neuropharmacology, 1981, 20, 473-475.	2.0	20
69	Sustained electrical stimulation of the perforant path duplicates kainate-induced electrophysiological effects and hippocampal damage in rats. Neuroscience Letters, 1981, 24, 279-284.	1.0	168
70	Para-halogenated phenethylamines: Similar serotonergic effects in rats by different mechanisms. Pharmacology Biochemistry and Behavior, 1980, 13, 283-286.	1.3	9
71	Effect of Morphine on 'Wet-Dog' Shakes Caused by Cerebroventricular Injection of Serotonin. Pharmacology, 1979, 18, 299-305.	0.9	24
72	Serotonin agonist actions of p-chlorophenylalanine. Neuropharmacology, 1978, 17, 1029-1033.	2.0	20

#	Article	IF	CITATIONS
73	Postmortem stability of norepinephrine, dopamine, and serotonin in rat brain. Journal of Neurochemistry, 1977, 28, 1129-1131.	2.1	57