
Tohru Tominaga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5377895/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	<scp>CYP</scp> 81A P450s are involved in concomitant crossâ€resistance to acetolactate synthase and acetylâ€CoA carboxylase herbicides in <i>Echinochloa phyllopogon</i> . New Phytologist, 2019, 221, 2112-2122.	7.3	112
2	Functional characterization of cytochrome P450 CYP81A subfamily to disclose the pattern of cross-resistance in Echinochloa phyllopogon. Plant Molecular Biology, 2020, 102, 403-416.	3.9	66
3	Discovery of single-nucleotide mutations in acetolactate synthase genes by Ecotilling. Pesticide Biochemistry and Physiology, 2007, 88, 143-148.	3.6	33
4	Copy Number Variation in Acetolactate Synthase Genes of Thifensulfuron-Methyl Resistant Alopecurus aequalis (Shortawn Foxtail) Accessions in Japan. Frontiers in Plant Science, 2017, 8, 254.	3.6	30
5	Nucleotide substitutions in the acetolactate synthase genes of sulfonylurea-resistant biotypes of Monochoria vaginalis (Pontederiaceae). Genes and Genetic Systems, 2007, 82, 207-215.	0.7	21
6	Glyphosateâ€resistant Italian ryegrass (<i>Lolium multiflorum</i>) on rice paddy levees in Japan. Weed Biology and Management, 2013, 13, 31-38.	1.4	17
7	Self-EcoTILLING to identify single-nucleotide mutations in multigene family. Pesticide Biochemistry and Physiology, 2008, 92, 24-29.	3.6	15
8	Growth of seedlings and plants from rhizome pieces of cogongrass (Imperata cylindrica (L.) Beauv.). Weed Biology and Management, 2003, 3, 193-195.	1.4	12
9	Floristic compositions of Inner Mongolian grasslands under different land-use conditions. Grassland Science, 2008, 54, 173-178.	1.1	12
10	Sulfonylurea-resistant biotypes of Monochoria vaginalis generate higher ultraweak photon emissions than the susceptible ones. Pesticide Biochemistry and Physiology, 2009, 95, 117-120.	3.6	12
11	Spontaneous ultraweak photon emission from rice (Oryza sativa L.) and paddy weeds treated with a sulfonylurea herbicide. Pesticide Biochemistry and Physiology, 2007, 89, 158-162.	3.6	11
12	Gene expression shapes the patterns of parallel evolution of herbicide resistance in the agricultural weed <i>Monochoria vaginalis</i> . New Phytologist, 2021, 232, 928-940.	7.3	11
13	Resistance to paraquat in <i><scp>M</scp>azus pumilus</i> . Weed Research, 2013, 53, 176-182.	1.7	10
14	Characterization of the acetolactate synthase gene family in sensitive and resistant biotypes of two tetraploid Monochoria weeds, M. vaginalis and M. korsakowii. Pesticide Biochemistry and Physiology, 2020, 165, 104506.	3.6	10
15	The role of weed seed contamination in grain commodities as propagule pressure. Biological Invasions, 2022, 24, 1707-1723.	2.4	10
16	Inheritance mode of the awnlessness of darnel (Lolium temulentum L.). Weed Biology and Management, 2003, 3, 46-48.	1.4	9
17	Development of microsatellite markers for the endangered grassland species Vincetoxicum pycnostelma (Apocynaceae) by using next-generation sequencing technology. Conservation Genetics Resources, 2012, 4, 669-671.	0.8	9
18	Plant growth inhibitory activity and active substances with allelopathic potential of cogongrass (<scp><i>Imperata cylindrica</i></scp>) rhizome. Weed Biology and Management, 2018, 18, 92-98.	1.4	9

TOHRU TOMINAGA

#	Article	IF	CITATIONS
19	Inheritance of Seed Shattering in Lolium temulentum and L. persicum Hybrids. Genetic Resources and Crop Evolution, 2006, 53, 449-451.	1.6	8
20	Pollination of chasmogamous flowers and the effects of light and emergence time on chasmogamy and cleistogamy in <i>Monochoria vaginalis</i> . Weed Biology and Management, 2008, 8, 260-266.	1.4	8
21	Development of chloroplast DNA markers in Japanese <i>Imperata cylindrica</i> . Weed Research, 2015, 55, 329-333.	1.7	8
22	Weed Growth Suppression by Cogongrass (Imperata cylindrica) Leaves Journal of Weed Science and Technology, 1997, 42, 289-293.	0.1	7
23	Genetic Diversity of Darnel (Lolium Temulentum L.) in Malo, Ethiopia Depends on Traditional Farming Systems. Economic Botany, 2004, 58, 568-577.	1.7	7
24	Nonâ€ŧargetâ€site mechanism of glyphosate resistance in Italian ryegrass (Lolium multiflorum). Weed Biology and Management, 2018, 18, 127-135.	1.4	6
25	Revegetation in Japan overlooks geographical genetic structure of native <i>Artemisia indica</i> var. <i>maximowiczii</i> populations. Restoration Ecology, 2022, 30, e13567.	2.9	6
26	Smallâ€scale heterogeneity in the soil environment influences the distribution of lawn grass and weeds. Weed Biology and Management, 2010, 10, 209-218.	1.4	5
27	Corm Weight-Dependent Reproduction of Pinellia ternata Journal of Weed Science and Technology, 1997, 42, 18-24.	0.1	5
28	Drastic shift in flowering phenology of <scp>F₁</scp> hybrids causing rapid reproductive isolation in <i>Imperata cylindrica</i> in Japan. Journal of Ecology, 2022, 110, 1548-1560.	4.0	5
29	Awn of darnel (Lolium temulentum L.) as an anthropogenic dispersal organ: A case study in Malo, south-western Ethiopia. Weed Biology and Management, 2004, 4, 218-221.	1.4	4
30	Root and rhizome systems of perennial grasses grown in Inner Mongolian grassland, China. Grassland Science, 2009, 55, 187-192.	1.1	4
31	Preliminary Observations of Insect Visitation to Flowers of Vincetoxicum pycnostelma (Apocynaceae:) Tj ETQq1 3	l 0,784314 0.3	4 rgBT /Overl
32	Growth and reproductive success of the seedâ€derived plants of <i>Sagittaria trifolia</i> emerging at different times. Weed Biology and Management, 2014, 14, 178-185.	1.4	4
33	The Expansion Route of Ryegrasses (Lolium spp.) into Sandy Coasts in Japan. Invasive Plant Science and Management, 2017, 10, 61-71.	1.1	4
34	Growth of hybrids between the common and early ecotypes of <i>Imperata cylindrica</i> . Grassland Science, 2017, 63, 128-131.	1.1	4
35	Intra- and inter-populational variation of Imperata cylindrica var. koenigii on Kii-Ohshima Island of Japan Journal of Weed Science and Technology, 1989, 34, 273-279.	0.1	4
36	Thiobencarb resistance mechanism is distinct from CYP81A-based cross-resistance in late watergrass (<i>Echinochloa phyllopogon</i>). Weed Science, 2022, 70, 160-166.	1.5	4

TOHRU TOMINAGA

#	Article	IF	CITATIONS
37	Clonal Variation in the Sprouting Pattern of the Tubers in Eleocharis kuroguwai, a Cyperaceous Weed, with Special Reference to its Perennation Strategy. Plant Species Biology, 1986, 1, 127-134.	1.0	3
38	Isolation and characterization of polymorphic microsatellite loci for Imperata cylindrica, an invasive perennial grass. Conservation Genetics Resources, 2009, 1, 127-129.	0.8	3
39	Reciprocal transplant experiments testing the performance of common and early flowering types of <scp><i>Imperata cylindrica</i></scp> in Japan. Weed Biology and Management, 2018, 18, 167-175.	1.4	3
40	Germination characteristics of <scp><i>Sagittaria trifolia</i></scp> . Weed Biology and Management, 2018, 18, 160-166.	1.4	3
41	Reproductive biology and genetic population structure of two alien Lolium species inhabiting the sandy coasts of Japan. Plant Species Biology, 2019, 34, 61-69.	1.0	3
42	Seasonal change in the standing-crop of Imperata cylindrica var. koenigii grassland in the Kii-Ohshima Island of Japan Journal of Weed Science and Technology, 1989, 34, 204-209.	0.1	3
43	Sprouting of shoots from rhizome segments of Imperata cylindrica var. koenigii Journal of Weed Science and Technology, 1990, 35, 371-372.	0.1	3
44	Variation and Adaptation of Imperata cylindrica Journal of Weed Science and Technology, 1991, 36, 207-216.	0.1	2
45	Hybridizations and genetic relationships among Lindernia species (Scrophulariaceae): L. procumbens and two subspecies of L. dubia. Aquatic Botany, 2011, 94, 165-171.	1.6	2
46	Research issues, challenges, and opportunities for weed management in Japan. Crop Protection, 2020, 134, 104450.	2.1	2
47	日本産ãfã,¬ãfഈ生æ…<ãëãã®å^©ç"ã∗é–¢ã™ã,<ç-å•̂çš"ç"ç©¶. Journal of Weed Science and Technology,	2007, 52,	66-71.
48	Distribution of sulfonylurea-resistant biotypes of Monochoria vaginalis in Shizuoka Prefecture, Japan. Journal of Weed Science and Technology, 2007, 53, 123-127.	0.1	2
49	Relationship between weed vegetation and soil properties in public lawns in Kyoto City. Journal of Weed Science and Technology, 2008, 54, 7-16.	0.1	2
50	Emergence of Glyphosate- and Glufosinate-resistant Italian Ryegrass (<i>Lolium) Tj ETQq0 0 0 rgBT /Overlock Foliar-applied Herbicides. Japan Agricultural Research Quarterly, 2020, 54, 129-135.</i>	2 10 Tf 50 0.4	227 Td (mul 2
51	Intra- and Inter-Specific Competition of Poa crassinervis Honda and P. annua L Journal of Weed Science and Technology, 1998, 43, 20-25.	0.1	2
52	Germination characteristics of four common perennial grasses of Inner Mongolian grassland, China. Grassland Science, 2014, 60, 9-14.	1.1	1
53	Genetic Identity Based on Whole-Genome SNP Array Data of Weedy Rice in Nagano, Japan. Agronomy, 2019, 9, 472.	3.0	1
54	Title is missing!. Journal of Weed Science and Technology, 2006, 51, 82-86.	0.1	1

TOHRU TOMINAGA

#	Article	IF	CITATIONS
55	Vatiation of Imperata cylindrica in Kinki district Japan revealed by AFLP analysis Journal of the Japanese Society of Revegetation Technology, 2010, 36, 299-303.	0.1	1
56	Variation in heading response to temperature and day length in Imperate cylindrica of Japan Journal of Weed Science and Technology, 1990, 35, 81-83.	0.1	1
57	Genecological Studies on Imperata cylindrica(L.) Beauv Journal of Weed Science and Technology, 1993, 38, 82-89.	0.1	1
58	Variation in Seed Germination of Cultivated and Weedy Perilla(Perilla frutescens var. frutescens) Journal of Weed Science and Technology, 1998, 43, 43-48.	0.1	0
59	Morphological variation in the paddy weeds of Monochoria. Journal of Weed Science and Technology, 2010, 55, 245-253.	0.1	0
60	Effects of the planting substratum on the growth of horseweed (Conyza sumatrensis (Retz.) Walker) in Zoysia japonica Steud. turf. Grassland Science, 2012, 58, 117-119.	1.1	0
61	Enantiostylous flowers and their adaptive significances. Journal of Weed Science and Technology, 2016, 61, 32-37.	0.1	0
62	Plant species composition in an international trading port and residential areas of Kobe, Japan. Weed Biology and Management, 2018, 18, 3-11.	1.4	0
63	Habitats of Lolium temulentum and L. persicum in northwestern parts of Iran. Journal of Weed Science and Technology, 2005, 50, 28-29.	0.1	0
64	Variation in seedlings from one panicle of Imperata cylindrica (L.) Beauv Journal of the Japanese Society of Revegetation Technology, 2008, 34, 631-635.	0.1	0
65	Effect of Storage Temperature and Period on Seed Cermination of Poa crassinervis Honda Journal of Weed Science and Technology, 1996, 41, 116-119.	0.1	0
66	Seasonal Change of Germination of Poa crassinervis Honda. Journal of Weed Science and Technology, 1997, 41, 315-322.	0.1	0