
Andrew W Wood

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5377855/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hydrologic Implications of Dynamical and Statistical Approaches to Downscaling Climate Model Outputs. Climatic Change, 2004, 62, 189-216.	3.6	1,503
2	Human-Induced Changes in the Hydrology of the Western United States. Science, 2008, 319, 1080-1083.	12.6	956
3	The Effects of Climate Change on the Hydrology and Water Resources of the Colorado River Basin. Climatic Change, 2004, 62, 337-363.	3.6	825
4	Use of a standardized runoff index for characterizing hydrologic drought. Geophysical Research Letters, 2008, 35, .	4.0	825
5	Long-range experimental hydrologic forecasting for the eastern United States. Journal of Geophysical Research, 2002, 107, ACL 6-1.	3.3	772
6	Twentieth-Century Drought in the Conterminous United States. Journal of Hydrometeorology, 2005, 6, 985-1001.	1.9	457
7	A unified approach for processâ€based hydrologic modeling: 1. Modeling concept. Water Resources Research, 2015, 51, 2498-2514.	4.2	354
8	Mitigating the Effects of Climate Change on the Water Resources of the Columbia River Basin. Climatic Change, 2004, 62, 233-256.	3.6	314
9	Development of a large-sample watershed-scale hydrometeorological data set for the contiguous USA: data set characteristics and assessment of regional variability in hydrologic model performance. Hydrology and Earth System Sciences, 2015, 19, 209-223.	4.9	310
10	Detection and Attribution of Streamflow Timing Changes to Climate Change in the Western United States. Journal of Climate, 2009, 22, 3838-3855.	3.2	260
11	Water Resources Implications of Global Warming: A U.S. Regional Perspective. Climatic Change, 1999, 43, 537-579.	3.6	225
12	Attribution of Declining Western U.S. Snowpack to Human Effects. Journal of Climate, 2008, 21, 6425-6444.	3.2	217
13	Flash droughts present a new challenge for subseasonal-to-seasonal prediction. Nature Climate Change, 2020, 10, 191-199.	18.8	210
14	The Evaporative Demand Drought Index. Part I: Linking Drought Evolution to Variations in Evaporative Demand. Journal of Hydrometeorology, 2016, 17, 1745-1761.	1.9	209
15	A Test Bed for New Seasonal Hydrologic Forecasting Approaches in the Western United States. Bulletin of the American Meteorological Society, 2006, 87, 1699-1712.	3.3	206
16	Potential Implications of PCM Climate Change Scenarios for Sacramento–San Joaquin River Basin Hydrology and Water Resources. Climatic Change, 2004, 62, 257-281.	3.6	203
17	An ensemble approach for attribution of hydrologic prediction uncertainty. Geophysical Research Letters, 2008, 35, .	4.0	178
18	The evolution of process-based hydrologic models: historical challenges and the collective quest for physical realism. Hydrology and Earth System Sciences, 2017, 21, 3427-3440.	4.9	177

#	Article	IF	CITATIONS
19	The Great Colorado Flood of September 2013. Bulletin of the American Meteorological Society, 2015, 96, 1461-1487.	3.3	175
20	A unified approach for processâ€based hydrologic modeling: 2. Model implementation and case studies. Water Resources Research, 2015, 51, 2515-2542.	4.2	173
21	Characterizing Uncertainty of the Hydrologic Impacts of Climate Change. Current Climate Change Reports, 2016, 2, 55-64.	8.6	159
22	Correcting Errors in Streamflow Forecast Ensemble Mean and Spread. Journal of Hydrometeorology, 2008, 9, 132-148.	1.9	142
23	How Suitable is Quantile Mapping For Postprocessing GCM Precipitation Forecasts?. Journal of Climate, 2017, 30, 3185-3196.	3.2	135
24	Challenges of Operational River Forecasting. Journal of Hydrometeorology, 2014, 15, 1692-1707.	1.9	127
25	Gridded Ensemble Precipitation and Temperature Estimates for the Contiguous United States. Journal of Hydrometeorology, 2015, 16, 2481-2500.	1.9	124
26	The Evaporative Demand Drought Index. Part II: CONUS-Wide Assessment against Common Drought Indicators. Journal of Hydrometeorology, 2016, 17, 1763-1779.	1.9	113
27	How Essential is Hydrologic Model Calibration to Seasonal Streamflow Forecasting?. Journal of Hydrometeorology, 2008, 9, 1350-1363.	1.9	111
28	On the choice of calibration metrics for "high-flow―estimation using hydrologic models. Hydrology and Earth System Sciences, 2019, 23, 2601-2614.	4.9	110
29	Detection and Attribution of Temperature Changes in the Mountainous Western United States. Journal of Climate, 2008, 21, 6404-6424.	3.2	109
30	Towards seamless largeâ€domain parameter estimation for hydrologic models. Water Resources Research, 2017, 53, 8020-8040.	4.2	108
31	The NAME 2004 Field Campaign and Modeling Strategy. Bulletin of the American Meteorological Society, 2006, 87, 79-94.	3.3	98
32	Ensemble flood forecasting: Current status and future opportunities. Wiley Interdisciplinary Reviews: Water, 2020, 7, e1432.	6.5	96
33	A retrospective assessment of National Centers for Environmental Prediction climate model–based ensemble hydrologic forecasting in the western United States. Journal of Geophysical Research, 2005, 110, .	3.3	84
34	Benchmarking of a Physically Based Hydrologic Model. Journal of Hydrometeorology, 2017, 18, 2215-2225.	1.9	79
35	The potential to reduce uncertainty in regional runoff projections from climate models. Nature Climate Change, 2019, 9, 926-933.	18.8	75
36	Prospects for Advancing Drought Understanding, Monitoring, and Prediction. Journal of Hydrometeorology, 2015, 16, 1636-1657.	1.9	72

#	Article	IF	CITATIONS
37	Quantifying Streamflow Forecast Skill Elasticity to Initial Condition and Climate Prediction Skill. Journal of Hydrometeorology, 2016, 17, 651-668.	1.9	70
38	Evaluation of Precipitation Products for Global Hydrological Prediction. Journal of Hydrometeorology, 2008, 9, 388-407.	1.9	67
39	Statistical applications of physically based hydrologic models to seasonal streamflow forecasts. Water Resources Research, 2011, 47, .	4.2	67
40	What Drives the Variability of Evaporative Demand across the Conterminous United States?. Journal of Hydrometeorology, 2012, 13, 1195-1214.	1.9	60
41	Generating Ensemble Streamflow Forecasts: A Review of Methods and Approaches Over the Past 40 Years. Water Resources Research, 2021, 57, e2020WR028392.	4.2	59
42	Projected wetland densities under climate change: habitat loss but little geographic shift in conservation strategy. Ecological Applications, 2016, 26, 1677-1692.	3.8	57
43	Assessing recent declines in Upper Rio Grande runoff efficiency from a paleoclimate perspective. Geophysical Research Letters, 2017, 44, 4124-4133.	4.0	57
44	Use of Satellite Data for Streamflow and Reservoir Storage Forecasts in the Snake River Basin. Journal of Water Resources Planning and Management - ASCE, 2006, 132, 97-110.	2.6	55
45	Assessing Climate Change Implications for Water Resources Planning. Climatic Change, 1997, 37, 203-228.	3.6	54
46	A hybrid statisticalâ€dynamical framework for meteorological drought prediction: Application to the southwestern United States. Water Resources Research, 2016, 52, 5095-5110.	4.2	53
47	Climate change impacts on flood risk and asset damages within mapped 100-year floodplains of the contiguous United States. Natural Hazards and Earth System Sciences, 2017, 17, 2199-2211.	3.6	53
48	Evaluation of snow data assimilation using the ensemble Kalman filter for seasonal streamflow prediction in the western United States. Hydrology and Earth System Sciences, 2017, 21, 635-650.	4.9	52
49	Future streamflow regime changes in the United States: assessment using functional classification. Hydrology and Earth System Sciences, 2020, 24, 3951-3966.	4.9	50
50	An intercomparison of approaches for improving operational seasonal streamflow forecasts. Hydrology and Earth System Sciences, 2017, 21, 3915-3935.	4.9	49
51	Spatial Dependence of Floods Shaped by Spatiotemporal Variations in Meteorological and Landâ€5urface Processes. Geophysical Research Letters, 2020, 47, e2020GL088000.	4.0	40
52	Mitigating the Impacts of Climate Nonstationarity on Seasonal Streamflow Predictability in the U.S. Southwest. Geophysical Research Letters, 2017, 44, 12,208.	4.0	37
53	SCDNA: a serially complete precipitation and temperature dataset for North America from 1979 to 2018. Earth System Science Data, 2020, 12, 2381-2409.	9.9	35
54	Planning for an Uncertain Future: Climate Change Sensitivity Assessment toward Adaptation Planning for Public Water Supply. Earth Interactions, 2013, 17, 1-26.	1.5	31

#	Article	IF	CITATIONS
55	Passive microwave remote sensing of snow constrained by hydrological simulations. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39, 1744-1756.	6.3	30
56	Increasing importance of temperature as a contributor to the spatial extent of streamflow drought. Environmental Research Letters, 2021, 16, 024038.	5.2	30
57	Diagnostic Evaluation of Largeâ€Domain Hydrologic Models Calibrated Across the Contiguous United States. Journal of Geophysical Research D: Atmospheres, 2019, 124, 13991-14007.	3.3	29
58	Automation and human expertise in operational river forecasting. Wiley Interdisciplinary Reviews: Water, 2016, 3, 692-705.	6.5	24
59	Adjusting Flood Peak Frequency Changes to Account for Climate Change Impacts in the Western United States. Journal of Water Resources Planning and Management - ASCE, 2018, 144, .	2.6	23
60	An Efficient Approach for Estimating Streamflow Forecast Skill Elasticity. Journal of Hydrometeorology, 2017, 18, 1715-1729.	1.9	22
61	EMDNA: an Ensemble Meteorological Dataset for North America. Earth System Science Data, 2021, 13, 3337-3362.	9.9	22
62	DOs and DON'Ts for using climate change information for water resource planning and management: guidelines for study design. Climate Services, 2018, 12, 1-13.	2.5	21
63	Real-Time Precipitation Estimation Based on Index Station Percentiles*. Journal of Hydrometeorology, 2009, 10, 266-277.	1.9	20
64	An Experiment on Risk-Based Decision-Making in Water Management Using Monthly Probabilistic Forecasts. Bulletin of the American Meteorological Society, 2016, 97, 541-551.	3.3	20
65	Advancing Drought Understanding, Monitoring, and Prediction. Bulletin of the American Meteorological Society, 2013, 94, ES186-ES188.	3.3	19
66	Developing Subseasonal to Seasonal Climate Forecast Products for Hydrology and WaterAManagement. Journal of the American Water Resources Association, 2019, 55, 1024-1037.	2.4	18
67	Western U.S. Water Supply Forecasting: A Tradition Evolves. Eos, 2014, 95, 28-29.	0.1	17
68	100 Years of Progress in Hydrology. Meteorological Monographs, 2018, 59, 25.1-25.51.	5.0	16
69	Flood spatial coherence, triggers, and performance in hydrological simulations: large-sample evaluation of four streamflow-calibrated models. Hydrology and Earth System Sciences, 2021, 25, 105-119.	4.9	16
70	Mapping the spatial distribution and time evolution of snow water equivalent with passive microwave measurements. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41, 612-621.	6.3	13
71	Benchmark decadal forecast skill for terrestrial water storage estimated by an elasticity framework. Nature Communications, 2019, 10, 1237.	12.8	13
72	Space–time dependence of compound hot–dry events in the United States: assessment using a multi-site multi-variable weather generator. Earth System Dynamics, 2021, 12, 621-634.	7.1	13

#	Article	IF	CITATIONS
73	Evaluation of Hydrologically Relevant PCM Climate Variables and Large-Scale Variability over the Continental U.S Climatic Change, 2004, 62, 45-74.	3.6	12
74	Probabilistic Spatial Meteorological Estimates for Alaska and the Yukon. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032696.	3.3	11
75	Potential in improving monthly streamflow forecasting through variational assimilation of observed streamflow. Journal of Hydrology, 2021, 600, 126559.	5.4	9
76	Informing Hydrometric Network Design for Statistical Seasonal Streamflow Forecasts. Journal of Hydrometeorology, 2013, 14, 1587-1604.	1.9	7
77	Application of Postprocessing to Watershed-Scale Subseasonal Climate Forecasts over the Contiguous United States. Journal of Hydrometeorology, 2020, 21, 971-987.	1.9	7
78	Enhancing Ensemble Seasonal Streamflow Forecasts in the Upper Colorado River Basin Using Multiâ€Model Climate Forecasts. Journal of the American Water Resources Association, 2021, 57, 906-922.	2.4	6
79	Invigorating Hydrological Research Through Journal Publications. Water Resources Research, 2020, 56, .	4.2	5
80	Leveraging ensemble meteorological forcing data to improve parameter estimation of hydrologic models. Hydrological Processes, 2021, 35, e14410.	2.6	5
81	Hydrologic Model Sensitivity to Temporal Aggregation of Meteorological Forcing Data: A Case Study for the Contiguous United States. Journal of Hydrometeorology, 2022, 23, 167-183.	1.9	4
82	Improving Forecasts for Water Management. Eos, 2014, 95, 3-3.	0.1	3
83	Joint editorial: Invigorating hydrological research through journal publications. Hydrology and Earth System Sciences, 2018, 22, 5735-5739.	4.9	3
84	Ensemble Dressing of Meteorological Fields: Using Spatial Regression to Estimate Uncertainty in Deterministic Gridded Meteorological Datasets. Journal of Hydrometeorology, 2022, 23, 1525-1543.	1.9	3
85	Motivation and Overview of Hydrological Ensemble Post-processing. , 2019, , 783-793.		2
86	Research to Advance Drought Monitoring and Prediction Capabilities. Drought and Water Crises, 2017, , 127-140.	0.1	2
87	Motivation and Overview of Hydrological Ensemble Post-processing. , 2018, , 1-10.		2
88	The Effects of Climate Change on Water Management Strategies and Demands in the Central Valley of California. , 2001, , 1.		1
89	Value of Forecasts in Reservoir Operations Management. , 2014, , .		1
90	Seasonal Ensemble Forecast Post-processing 2019 819-845		1

emble Forecast Post-processing. , 2019, , 819-845.

#	Article	IF	CITATIONS
91	Seasonal Ensemble Forecast Post-processing. , 2019, , 1-27.		1
92	Motivation and Overview of Hydrological Ensemble Post-processing. , 2019, , 1-11.		1
93	Improving station-based ensemble surface meteorological analyses using numerical weather prediction: A case study of the Oroville Dam crisis precipitation event. Journal of Hydrometeorology, 2022, , .	1.9	1
94	Conducting a Virtual Flood for Devils Lake, North Dakota. , 1999, , 1.		0
95	Title is missing!. Climatic Change, 2000, 44, 539-541.	3.6	0
96	Motivation and Overview of Hydrological Ensemble Post-processing. , 2018, , 1-11.		0
97	Seasonal Ensemble Forecast Post-processing. , 2018, , 1-27.		0
98	Joint editorial: Invigorating hydrological research through journal publications. Proceedings of the International Association of Hydrological Sciences, 0, 380, 3-8.	1.0	0