
Simone Lemeer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5377821/publications.pdf Version: 2024-02-01

SIMONELEMEER

#	Article	IF	CITATIONS
1	Widespread arginine phosphorylation in Staphylococcus aureus. Molecular and Cellular Proteomics, 2022, , 100232.	3.8	3
2	Histidine phosphorylation in human cells; a needle or phantom in the haystack?. Nature Methods, 2022, 19, 827-828.	19.0	8
3	In-Depth Characterization of the Staphylococcus aureus Phosphoproteome Reveals New Targets of Stk1. Molecular and Cellular Proteomics, 2021, 20, 100034.	3.8	24
4	Thermal Proteome Profiling in Zebrafish Reveals Effects of Napabucasin on Retinoic Acid Metabolism. Molecular and Cellular Proteomics, 2021, 20, 100033.	3.8	8
5	Meltome atlas—thermal proteome stability across the tree of life. Nature Methods, 2020, 17, 495-503.	19.0	152
6	Loss of the Fanconi anemia–associated protein NIPA causes bone marrow failure. Journal of Clinical Investigation, 2020, 130, 2827-2844.	8.2	8
7	Gaining Confidence in the Elusive Histidine Phosphoproteome. Analytical Chemistry, 2019, 91, 5542-5547.	6.5	23
8	Phosphopeptide Fragmentation and Site Localization by Mass Spectrometry: An Update. Analytical Chemistry, 2019, 91, 126-141.	6.5	80
9	CTGF/VEGFA-activated Fibroblasts Promote Tumor Migration Through Micro-environmental Modulation. Molecular and Cellular Proteomics, 2018, 17, 1502-1514.	3.8	12
10	Defeating Major Contaminants in Fe3+- Immobilized Metal Ion Affinity Chromatography (IMAC) Phosphopeptide Enrichment. Molecular and Cellular Proteomics, 2018, 17, 1028-1034.	3.8	68
11	Widespread bacterial protein histidine phosphorylation revealed by mass spectrometry-based proteomics. Nature Methods, 2018, 15, 187-190.	19.0	140
12	A New Tool to Reveal Bacterial Signaling Mechanisms in Antibiotic Treatment and Resistance. Molecular and Cellular Proteomics, 2018, 17, 2496-2507.	3.8	22
13	Proteomic tools to study drug function. Current Opinion in Systems Biology, 2018, 10, 9-18.	2.6	4
14	Adaptive Resistance to EGFR-Targeted Therapy by Calcium Signaling in NSCLC Cells. Molecular Cancer Research, 2018, 16, 1773-1784.	3.4	9
15	Lapatinib Resistance in Breast Cancer Cells Is Accompanied by Phosphorylation-Mediated Reprogramming of Glycolysis. Cancer Research, 2017, 77, 1842-1853.	0.9	79
16	Optimized Enrichment of Phosphoproteomes by Fe-IMAC Column Chromatography. Methods in Molecular Biology, 2017, 1550, 47-60.	0.9	26
17	MALDIâ€TOF and nESI Orbitrap MS/MS identify orthogonal parts of the phosphoproteome. Proteomics, 2016, 16, 1447-1456.	2.2	13
18	Comprehensive and Reproducible Phosphopeptide Enrichment Using Iron Immobilized Metal Ion Affinity Chromatography (Fe-IMAC) Columns. Molecular and Cellular Proteomics, 2015, 14, 205-215.	3.8	111

SIMONE LEMEER

#	Article	IF	CITATIONS
19	Evaluation of Kinase Activity Profiling Using Chemical Proteomics. ACS Chemical Biology, 2015, 10, 2743-2752.	3.4	32
20	Quantitative proteome profiling of human myoma and myometrium tissue reveals kinase expression signatures with potential for therapeutic intervention. Proteomics, 2015, 15, 356-364.	2.2	8
21	Proteomic analysis of phosphorylation in cancer. Expert Review of Proteomics, 2014, 11, 259-267.	3.0	44
22	Mass-spectrometry-based draft of the human proteome. Nature, 2014, 509, 582-587.	27.8	1,697
23	DMSO enhances electrospray response, boosting sensitivity of proteomic experiments. Nature Methods, 2013, 10, 989-991.	19.0	209
24	Comparing Immobilized Kinase Inhibitors and Covalent ATP Probes for Proteomic Profiling of Kinase Expression and Drug Selectivity. Journal of Proteome Research, 2013, 12, 1723-1731.	3.7	48
25	SCFFbxo9 and CK2 direct the cellular response to growth factor withdrawal via Tel2/Tti1 degradation and promote survival in multiple myeloma. Nature Cell Biology, 2013, 15, 72-81.	10.3	76
26	A large synthetic peptide and phosphopeptide reference library for mass spectrometry–based proteomics. Nature Biotechnology, 2013, 31, 557-564.	17.5	164
27	Phosphorylation site localization in peptides by MALDI MS/MS and the Mascot Delta Score. Analytical and Bioanalytical Chemistry, 2012, 402, 249-260.	3.7	23
28	Confident Phosphorylation Site Localization Using the Mascot Delta Score. Molecular and Cellular Proteomics, 2011, 10, S1-S12.	3.8	247
29	The phosphoproteomics data explosion. Current Opinion in Chemical Biology, 2009, 13, 414-420.	6.1	170