
Jin-Gen Dai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5377686/publications.pdf Version: 2024-02-01

IIN-CEN DAL

#	Article	IF	CITATIONS
1	Outward-growth of the Tibetan Plateau during the Cenozoic: A review. Tectonophysics, 2014, 621, 1-43.	2.2	444
2	Propagation of the deformation and growth of the Tibetan–Himalayan orogen: A review. Earth-Science Reviews, 2015, 143, 36-61.	9.1	209
3	Rapid forearc spreading between 130 and 120Ma: Evidence from geochronology and geochemistry of the Xigaze ophiolite, southern Tibet. Lithos, 2013, 172-173, 1-16.	1.4	176
4	Petrology and geochemistry of peridotites in the Zhongba ophiolite, Yarlung Zangbo Suture Zone: Implications for the Early Cretaceous intra-oceanic subduction zone within the Neo-Tethys. Chemical Geology, 2011, 288, 133-148.	3.3	159
5	Revision of the Cretaceous–Paleogene stratigraphic framework, facies architecture and provenance of the Xigaze forearc basin along the Yarlung Zangbo suture zone. Gondwana Research, 2012, 22, 415-433.	6.0	121
6	Multi-stage tectono-magmatic events of the Eastern Kunlun Range, northern Tibet: Insights from U–Pb geochronology and (U–Th)/He thermochronology. Tectonophysics, 2013, 599, 97-106.	2.2	112
7	Late Cretaceous K-rich magmatism in central Tibet: Evidence for early elevation of the Tibetan plateau?. Lithos, 2013, 160-161, 1-13.	1.4	100
8	Petrology and geochemistry of the Xiugugabu ophiolitic massif, western Yarlung Zangbo suture zone, Tibet. Lithos, 2011, 125, 347-367.	1.4	97
9	Late Devonian OIB alkaline gabbro in the Yarlung Zangbo Suture Zone: Remnants of the Paleo-Tethys?. Gondwana Research, 2011, 19, 232-243.	6.0	76
10	Exhumation History of the Gangdese Batholith, Southern Tibetan Plateau: Evidence from Apatite and Zircon (U-Th)/He Thermochronology. Journal of Geology, 2013, 121, 155-172.	1.4	64
11	Relicts of the Early Cretaceous seamounts in the central-western Yarlung Zangbo Suture Zone, southern Tibet. Journal of Asian Earth Sciences, 2012, 53, 25-37.	2.3	63
12	The vast proto-Tibetan Plateau: New constraints from Paleogene Hoh Xil Basin. Gondwana Research, 2012, 22, 434-446.	6.0	58
13	Nd isotopic compositions of the Tethyan Himalayan Sequence in southeastern Tibet. Science in China Series D: Earth Sciences, 2008, 51, 1306-1316.	0.9	49
14	Insights into the early Tibetan Plateau from (U–Th)/He thermochronology. Journal of the Geological Society, 2013, 170, 917-927.	2.1	38
15	Internal Drainage Has Sustained Lowâ€Relief Tibetan Landscapes Since the Early Miocene. Geophysical Research Letters, 2019, 46, 8741-8752.	4.0	38
16	Forearc magmatic evolution during subduction initiation: Insights from an Early Cretaceous Tibetan ophiolite and comparison with the Izu-Bonin-Mariana forearc. Bulletin of the Geological Society of America, 2021, 133, 753-776.	3.3	34
17	Late Eocene–Oligocene High Relief Paleotopography in the North Central Tibetan Plateau: Insights From Detrital Zircon U–Pb Geochronology and Leaf Wax Hydrogen Isotope Studies. Tectonics, 2020, 39, e2019TC005815.	2.8	32
18	Multi-stage volcanic activities and geodynamic evolution of the Lhasa terrane during the Cretaceous: Insights from the Xigaze forearc basin. Lithos, 2015, 218-219, 127-140.	1.4	31

Jin-Gen Dai

#	Article	IF	CITATIONS
19	Cenozoic thermo-tectonic evolution of the Gangdese batholith constrained by low-temperature thermochronology. Gondwana Research, 2017, 41, 451-462.	6.0	31
20	Differential exhumation histories between Qulong and Xiongcun porphyry copper deposits in the Gangdese copper metallogenic Belt: Insights from low temperature thermochronology. Ore Geology Reviews, 2019, 107, 801-819.	2.7	22
21	Two Stages of Accelerated Exhumation in the Middle Reach of the Yarlung River, Southern Tibet Since the Mida€Miocene. Tectonics, 2021, 40, e2020TC006618.	2.8	21
22	Middle Jurassic–early Cretaceous radiolarian assemblages of the western Yarlung Zangbo Suture Zone: Implications for the evolution of the Neo-Tethys. Geoscience Frontiers, 2017, 8, 989-997.	8.4	17
23	Badly Behaved Detrital (Uâ€Th)/He Ages: Problems With He Diffusion Models or Geological Models?. Geochemistry, Geophysics, Geosystems, 2019, 20, 2418-2432.	2.5	16
24	Deep carbon cycle recorded by calciumâ€silicate rocks (rodingites) in a subductionâ€related ophiolite. Geophysical Research Letters, 2016, 43, 11,635.	4.0	15
25	Burial and exhumation of the Hoh Xil Basin, northern Tibetan Plateau: Constraints from detrital (Uâ€Th)/He ages. Basin Research, 2020, 32, 894-915.	2.7	12
26	Sedimentology, provenance and geochronology of the Miocene Qiuwu Formation: Implication for the uplift history of Southern Tibet. Geoscience Frontiers, 2017, 8, 823-839.	8.4	8
27	The burial and exhumation history of the Liuqu Conglomerate in the Yarlung Zangbo suture zone, southern Tibet: Insights from clumped isotope thermometry. Journal of Asian Earth Sciences, 2019, 174, 205-217.	2.3	7
28	Apatite and zircon (<scp>U–Th</scp>)/He thermochronological evidence for Mesozoic exhumation of the Central Tibetan Mountain Range. Geological Journal, 2021, 56, 599-611.	1.3	7
29	The middle Cretaceous (110–94 Ma) evolution of Tangza Basin in the western Tibetan Plateau and implications for initial topographic growth of northern Lhasa. Bulletin of the Geological Society of America, 2021, 133, 1283-1300.	3.3	4
30	New apatite fission track evidence from the northern Qiangtang terrane reveal twoâ€phase evolution of central Tibet. Terra Nova, 2021, 33, 95-108.	2.1	4
31	Episodic continental extension in eastern Gondwana during the mid-late mesozoic: insights from geochronology and geochemistry of mafic rocks in the Tethyan Himalaya. International Geology Review, 0, , 1-18.	2.1	1
32	Evidence for deep processes from the Miocene potassic rock: Dynamic subsidence and uplift of the India-Asia Suture Zone. Lithos, 2021, 388-389, 106061.	1.4	0
33	Sm-Nd isotopic compositions of deep-marine mudstones, Xigaze forearc basin, southern Tibet: implications for drainage evolution and expansion. Journal of Asian Earth Sciences, 2022, , 105228.	2.3	0