Peter Meister

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5377563/publications.pdf

Version: 2024-02-01

36 papers 2,180 citations

331670 21 h-index 395702 33 g-index

41 all docs

41 docs citations

41 times ranked

2672 citing authors

#	Article	IF	CITATIONS
1	Nonlinear control of transcription through enhancer–promoter interactions. Nature, 2022, 604, 571-577.	27.8	187
2	Female meiosis II and pronuclear fusion require the microtubule transport factor Bicaudal D. Development (Cambridge), 2022, 149, .	2.5	6
3	Widespread promoter-driven expression during development. MicroPublication Biology, 2021, 2021, .	0.1	O
4	Tissue-specific DamID protocol using nanopore sequencing. Journal of Biological Methods, 2021, 8, e152.	0.6	0
5	Tissue-Specific Transcription Footprinting Using RNA Pol DamID (RAPID) in <i>Caenorhabditis elegans</i>	2.9	21
6	Generation of Inexpensive, Highly Labeled Probes for Fluorescence In Situ Hybridization (FISH). STAR Protocols, 2020, 1, 100006.	1.2	5
7	Males as somatic investment in a parthenogenetic nematode. Science, 2019, 363, 1210-1213.	12.6	24
8	Polycomb and Notch signaling regulate cell proliferation potential during <i>Caenorhabditis elegans</i> life cycle. Life Science Alliance, 2019, 2, e201800170.	2.8	6
9	Chromosomes and Chromatin in the Nematode Nucleus. , 2018, , 533-556.		O
10	Coupling 1D modifications and 3D nuclear organization: data, models and function. Current Opinion in Cell Biology, 2017, 44, 20-27.	5.4	37
11	DamlD Analysis of Nuclear Organization in Caenorhabditis elegans. Methods in Molecular Biology, 2016, 1411, 341-358.	0.9	14
12	Tools for <scp>DNA</scp> adenine methyltransferase identification analysis of nuclear organization during <i>C. elegans</i> development. Genesis, 2016, 54, 151-159.	1.6	9
13	From single genes to entire genomes: the search for a function of nuclear organization. Development (Cambridge), 2016, 143, 910-923.	2.5	34
14	Dosage compensation and nuclear organization: cluster to control chromosome-wide gene expression. Current Opinion in Genetics and Development, 2016, 37, 9-16.	3.3	6
15	Linking dosage compensation and X chromosome nuclear organization in <i>C. elegans</i> . Nucleus, 2015, 6, 266-272.	2.2	6
16	A Conserved Role for p48 Homologs in Protecting Dopaminergic Neurons from Oxidative Stress. PLoS Genetics, 2014, 10, e1004718.	3.5	33
17	Differential spatial and structural organization of the X chromosome underlies dosage compensation in <i>C. elegans</i> . Genes and Development, 2014, 28, 2591-2596.	5.9	48
18	Modern Tools to Study Nuclear Pore Complexes and Nucleocytoplasmic Transport in Caenorhabditis elegans. Methods in Cell Biology, 2014, 122, 277-310.	1.1	10

#	Article	IF	CITATIONS
19	Modern techniques for the analysis of chromatin and nuclear organization in C. elegans. WormBook, 2014, , 1-35.	5.3	34
20	Nuclear organization in the nematode C. elegans. Current Opinion in Cell Biology, 2013, 25, 395-402.	5. 4	5
21	Promoter- and RNA polymerase Il–dependent <i>hsp-16</i> gene association with nuclear pores in <i>Caenorhabditis elegans</i> . Journal of Cell Biology, 2013, 200, 589-604.	5. 2	60
22	Building silent compartments at the nuclear periphery: a recurrent theme. Current Opinion in Genetics and Development, 2013, 23, 96-103.	3.3	55
23	Microscopic Analysis of Chromatin Localization and Dynamics in C. elegans. Methods in Molecular Biology, 2013, 1042, 153-172.	0.9	4
24	Step-Wise Methylation of Histone H3K9 Positions Heterochromatin at the Nuclear Periphery. Cell, 2012, 150, 934-947.	28.9	524
25	Caenorhabditis elegans Heterochromatin protein 1 (HPL-2) links developmental plasticity, longevity and lipid metabolism. Genome Biology, 2011, 12, R123.	9.6	52
26	Locking the genome: nuclear organization and cell fate. Current Opinion in Genetics and Development, 2011, 21, 167-174.	3.3	68
27	Nuclear Geometry and Rapid Mitosis Ensure Asymmetric Episome Segregation in Yeast. Current Biology, 2011, 21, 25-33.	3.9	78
28	An EDMD Mutation in C.Âelegans Lamin Blocks Muscle-Specific Gene Relocation and Compromises Muscle Integrity. Current Biology, 2011, 21, 1603-1614.	3.9	125
29	The spatial dynamics of tissue-specific promoters during <i>C. elegans</i> development. Genes and Development, 2010, 24, 766-782.	5.9	180
30	Visualizing Yeast Chromosomes and Nuclear Architecture. Methods in Enzymology, 2010, 470, 535-567.	1.0	78
31	The nuclear envelope—a scaffold for silencing?. Current Opinion in Genetics and Development, 2009, 19, 180-186.	3.3	130
32	Modules for cloningâ€free chromatin tagging in <i>Saccharomyces cerevisae</i> . Yeast, 2008, 25, 235-239.	1.7	63
33	Replication foci dynamics: replication patterns are modulated by S-phase checkpoint kinases in fission yeast. EMBO Journal, 2007, 26, 1315-1326.	7.8	73
34	In and out of the Replication Factory. Cell, 2006, 125, 1233-1235.	28.9	22
35	Temporal separation of replication and recombination requires the intra-S checkpoint. Journal of Cell Biology, 2005, 168, 537-544.	5.2	72
36	Nuclear factories for signalling and repairing DNA double strand breaks in living fission yeast. Nucleic Acids Research, 2003, 31, 5064-5073.	14.5	72