
Giuseppe Saccomanni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5377413/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis and In Vitro Characterization of Selective Cannabinoid CB2 Receptor Agonists: Biological Evaluation against Neuroblastoma Cancer Cells. Molecules, 2022, 27, 3019.	3.8	3
2	Design, Synthesis, and In Vitro Evaluation of Novel 8-Amino-Quinoline Combined with Natural Antioxidant Acids. Pharmaceuticals, 2022, 15, 688.	3.8	2
3	Design, Synthesis, and Biological Activity of New CB2 Receptor Ligands: from Orthosteric and Allosteric Modulators to Dualsteric/Bitopic Ligands. Journal of Medicinal Chemistry, 2022, 65, 9918-9938.	6.4	15
4	Preliminary Investigation of a Novel 18F Radiopharmaceutical for Imaging CB2 Receptors in a SOD Mouse Model. Australian Journal of Chemistry, 2021, 74, 443.	0.9	4
5	Tyrosol-Enriched Tomatoes by Diffusion across the Fruit Peel from a Chitosan Coating: A Proposal of Functional Food. Foods, 2021, 10, 335.	4.3	6
6	Design and synthesis of H2S-donor hybrids: A new treatment for Alzheimer's disease?. European Journal of Medicinal Chemistry, 2019, 184, 111745.	5.5	49
7	Oleocanthal and oleacein contribute to the in vitro therapeutic potential of extra virgin oil-derived extracts in non-melanoma skin cancer. Toxicology in Vitro, 2018, 52, 243-250.	2.4	57
8	Anti-Proliferative Properties and Proapoptotic Function of New CB2 Selective Cannabinoid Receptor Agonist in Jurkat Leukemia Cells. International Journal of Molecular Sciences, 2018, 19, 1958.	4.1	21
9	Rutin and quercetin content in the forage of common buckwheat as affected by maturity and conservation method. Grassland Science, 2017, 63, 169-176.	1.1	2
10	Sulfonamido-derivatives of unsubstituted carbazoles as BACE1 inhibitors. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 4812-4816.	2.2	9
11	Novel analogs of PSNCBAM-1 as allosteric modulators of cannabinoid CB1 receptor. Bioorganic and Medicinal Chemistry, 2017, 25, 6427-6434.	3.0	14
12	Synthesis and pharmacological evaluation of new biphenylic derivatives as CB 2 receptor ligands. European Journal of Medicinal Chemistry, 2016, 116, 252-266.	5.5	13
13	Structural Optimization of 4-Chlorobenzoylpiperidine Derivatives for the Development of Potent, Reversible, and Selective Monoacylglycerol Lipase (MAGL) Inhibitors. Journal of Medicinal Chemistry, 2016, 59, 10299-10314.	6.4	42
14	Cytotoxic Activity of Oleocanthal Isolated from Virgin Olive Oil on Human Melanoma Cells. Nutrition and Cancer, 2016, 68, 873-877.	2.0	65
15	Design, synthesis and preliminary evaluation of 18F-labelled 1,8-naphthyridin- and quinolin-2-one-3-carboxamide derivatives for PET imaging of CB2 cannabinoid receptor. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 2532-2535.	2.2	19
16	Identification of chemical byproducts in the radiofluorination of structurally complex aryliodonium salts. Journal of Radioanalytical and Nuclear Chemistry, 2015, 303, 1021-1027.	1.5	1
17	New quinolone- and 1,8-naphthyridine-3-carboxamides as selective CB2 receptor agonists with anticancer and immuno–modulatory activity. European Journal of Medicinal Chemistry, 2015, 97, 10-18.	5.5	40
18	Synthesis, biological activity and molecular modeling of new biphenylic carboxamides as potent and selective CB2 receptor ligands. European Journal of Medicinal Chemistry, 2015, 90, 526-536.	5.5	18

#	Article	IF	CITATIONS
19	1,2-Dihydro-2-oxopyridine-3-carboxamides: The C-5 substituent is responsible for functionality switch at CB2 cannabinoid receptor. European Journal of Medicinal Chemistry, 2014, 74, 524-532.	5.5	16
20	CB2-Selective Cannabinoid Receptor Ligands: Synthesis, Pharmacological Evaluation, and Molecular Modeling Investigation of 1,8-Naphthyridin-2(1 <i>H</i>)-one-3-carboxamides. Journal of Medicinal Chemistry, 2014, 57, 8777-8791.	6.4	46
21	Immune-Modulation and Properties of Absorption and Blood Brain Barrier Permeability of 1,8-Naphthyridine Derivatives. Journal of NeuroImmune Pharmacology, 2013, 8, 1077-1086.	4.1	13
22	Determination of water-soluble vitamins in multivitamin dietary supplements and in artichokes by micellar electrokinetic chromatography. Natural Product Research, 2013, 27, 2212-2215.	1.8	15
23	Effects on Immune Cells of a New 1,8-Naphthyridin-2-One Derivative and Its Analogues as Selective CB2 Agonists: Implications in Multiple Sclerosis. PLoS ONE, 2013, 8, e62511.	2.5	27
24	Rational design, synthesis and anti-proliferative properties of new CB2 selective cannabinoid receptor ligands: An investigation of the 1,8-naphthyridin-2(1H)-one scaffold. European Journal of Medicinal Chemistry, 2012, 52, 284-294.	5.5	50
25	Carbazole-containing arylcarboxamides as BACE1 inhibitors. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 6657-6661.	2.2	22
26	Modified RP-LC of Phenylthiocarbamyl Amino Acid Adducts in Plasma Acetonitrile Extracts Using Multiple Internal Standards and Photo-Diode UV Detection. Chromatographia, 2010, 71, 291-297.	1.3	10
27	Pharmacokinetics of Tramadol after Epidural Administration in Horses. Journal of Equine Veterinary Science, 2010, 30, 44-46.	0.9	7
28	Microfluidic approach for fast labeling optimization and dose-on-demand implementation. Nuclear Medicine and Biology, 2010, 37, 547-555.	0.6	74
29	Pharmacokinetic evaluation of tramadol and its major metabolites after single oral sustained tablet administration in the dog: a pilot study. Veterinary Journal, 2009, 180, 253-255.	1.7	46
30	Pharmacokinetics of Tramadol and Its Metabolites M1, M2, and M5 in Donkeys after Intravenous and Oral Immediate Release Single-Dose Administration. Journal of Equine Veterinary Science, 2009, 29, 569-574.	0.9	32
31	Evaluation of tramadol and its main metabolites in horse plasma by highâ€performance liquid chromatography/fluorescence and liquid chromatography/electrospray ionization tandem mass spectrometry techniques. Rapid Communications in Mass Spectrometry, 2009, 23, 228-236.	1.5	27
32	Rational Design, Synthesis, and Pharmacological Properties of New 1,8-Naphthyridin-2(1H)-on-3-Carboxamide Derivatives as Highly Selective Cannabinoid-2 Receptor Agonists. Journal of Medicinal Chemistry, 2009, 52, 3644-3651.	6.4	36
33	High performance liquid chromatographic determination of thalidomide in patients affected by hepatocellular carcinoma. Journal of Pharmaceutical and Biomedical Analysis, 2008, 48, 447-451.	2.8	4
34	Structure-Based Virtual Screening: Identification of Novel CB2 Receptor Ligands. Letters in Drug Design and Discovery, 2007, 4, 15-19.	0.7	3
35	Taurine in women with a history of gestational diabetes. Diabetes Research and Clinical Practice, 2007, 76, 187-192.	2.8	9
36	New 1,8-naphthyridine and quinoline derivatives as CB2 selective agonists. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 6505-6510.	2.2	64

#	Article	IF	CITATIONS
37	Pharmacokinetics of Tramadol and its Metabolites M1, M2 and M5 in Horses Following Intravenous, Immediate Release (Fasted/Fed) and Sustained Release Single Dose Administration. Journal of Equine Veterinary Science, 2007, 27, 481-488.	0.9	67
38	Cannabinoid CB2/CB1 Selectivity. Receptor Modeling and Automated Docking Analysis. Journal of Medicinal Chemistry, 2006, 49, 984-994.	6.4	93
39	Design, Synthesis, and Biological Evaluation of New 1,8-Naphthyridin-4(1H)-on-3-carboxamide and Quinolin-4(1H)-on-3-carboxamide Derivatives as CB2Selective Agonists. Journal of Medicinal Chemistry, 2006, 49, 5947-5957.	6.4	66
40	Adenosine receptor modelling. A1/A2a selectivity. European Journal of Medicinal Chemistry, 2006, 41, 321-329.	5.5	15
41	1,8-Naphthyridin-4-one derivatives as new ligands of A2A adenosine receptors. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 4604-4610.	2.2	11
42	Synthesis of 3- or 4-Phenyl-1,8-naphthyridine Derivatives and Evaluation of Antimycobacterial and Antimicrobial Activity ChemInform, 2004, 35, no.	0.0	0
43	Synthesis and biological evaluation of 1,8-naphthyridin-4(1H)-on-3-carboxamide derivatives as new ligands of cannabinoid receptors. Bioorganic and Medicinal Chemistry, 2004, 12, 1921-1933.	3.0	36
44	Study on Affinity Profile toward Native Human and Bovine Adenosine Receptors of a Series of 1,8-Naphthyridine Derivatives. Journal of Medicinal Chemistry, 2004, 47, 3019-3031.	6.4	31
45	Synthesis of 3- or 4-phenyl-1,8-naphthyridine derivatives and evaluation of antimycobacterial and antimicrobial activity. Il Farmaco, 2003, 58, 859-866.	0.9	8
46	Synthesis of Variously Substituted 1,8-Naphthyridine Derivatives and Evaluation of Their Antimycobacterial Activity ChemInform, 2003, 34, no.	0.0	0
47	4-[6-(Dansylamino)hexylamino]-7-methyl-2-phenyl-1,8-naphthyridine as a New Potential Fluorescent Probe for Studying A1-Adenosine Receptor ChemInform, 2003, 34, no.	0.0	0
48	Synthesis and β-blocking activity of (R , S)-(E)-oximeethers of 2,3-dihydro-1,8-naphthyridine and 2,3-dihydrothiopyrano[2,3- b]pyridine: identification of β 3 -antagonists. Bioorganic and Medicinal Chemistry, 2003, 11, 4921-4931.	3.0	16
49	Synthesis of variously substituted 1,8-naphthyridine derivatives and evaluation of their antimycobacterial activity. Il Farmaco, 2002, 57, 631-639.	0.9	15
50	4-[6-(Dansylamino)hexylamino]-7-methyl-2-phenyl-1,8-naphthyridine as a new potential fluorescent probe for studying A1-adenosine receptor. Il Farmaco, 2002, 57, 783-786.	0.9	6
51	Synthesis and evaluation of antihypertensive activity of 1,8-naphthyridine derivatives. Part X. European Journal of Medicinal Chemistry, 2001, 36, 925-934.	5.5	28
52	Synthesis and antiplatelet activity of some 2,7-di(N-cycloamino)-3-phenyl-1,8-naphthyridine derivatives. Il Farmaco, 2001, 56, 311-318.	0.9	33
53	Synthesis and β-blocking activity of (R,S)-(E)-oximeethers of 2,3-dihydro-1,8-naphthyridine and 2,3-dihydrothiopyrano[2,3-b]pyridine:potential antihypertensive agents – Part IX. European Journal of Medicinal Chemistry, 2000, 35, 815-826.	5.5	94
54	Synthesis and antiplatelet activity of some 3-phenyl-1,8-naphthyridine derivatives. Il Farmaco, 2000, 55, 603-610.	0.9	26

#	Article	IF	CITATIONS
55	A Novel Class of Highly Potent and Selective A1Adenosine Antagonists:Â Structureâ^'Affinity Profile of a Series of 1,8-Naphthyridine Derivatives. Journal of Medicinal Chemistry, 2000, 43, 2814-2823.	6.4	30
56	Synthesis of 1,8-naphthyridine derivatives: potential antihypertensive agents – Part VIII. European Journal of Medicinal Chemistry, 1999, 34, 505-513.	5.5	17
57	Synthesis and evaluation of antimycobacterial activity of 4-phenyl-1,8-naphthyridine derivatives. Il Farmaco, 1998, 53, 741-746.	0.9	46
58	Synthesis of 1,8-naphthyridine derivatives: Potential antihypertensive agents — Part VII. European Journal of Medicinal Chemistry, 1998, 33, 383-397.	5.5	49
59	Unusual nitration of substituted 7â€aminoâ€1,8â€naphthyridine in the synthesis of compounds with antiplatelet activity. Journal of Heterocyclic Chemistry, 1997, 34, 1501-1510.	2.6	36