Xiaojun Wei

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5377158/xiaojun-wei-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

21 726 10 23 g-index

23 911 7 4.24 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
21	Translocation Behaviors of Synthetic Polyelectrolytes through Alpha-Hemolysin (EHL) and Mycobacterium smegmatis Porin A (MspA) Nanopores. <i>Journal of the Electrochemical Society</i> , 2022 , 169, 057510	3.9	
20	Nanopore sensing of Eyclodextrin induced host-guest interaction to reverse the binding of perfluorooctanoic acid to human serum albumin. <i>Proteomics</i> , 2021 , e2100058	4.8	0
19	Multiplex quantitative detection of SARS-CoV-2 specific IgG and IgM antibodies based on DNA-assisted nanopore sensing. <i>Biosensors and Bioelectronics</i> , 2021 , 181, 113134	11.8	20
18	Biosensing of EAmyloid Peptide Aggregation Dynamics using a Biological Nanopore. <i>Sensors and Actuators B: Chemical</i> , 2021 , 338,	8.5	7
17	Turning-on persistent luminescence out of chromium-doped zinc aluminate nanoparticles by instilling antisite defects under mild conditions. <i>Nanoscale</i> , 2021 , 13, 8514-8523	7.7	5
16	Continuous Flow Synthesis of Persistent Luminescent Chromium-Doped Zinc Gallate Nanoparticles. Journal of Physical Chemistry Letters, 2021 , 12, 7067-7075	6.4	3
15	N-Terminal Derivatization-Assisted Identification of Individual Amino Acids Using a Biological Nanopore Sensor. <i>ACS Sensors</i> , 2020 , 5, 1707-1716	9.2	7
14	Enabling nanopore technology for sensing individual amino acids by a derivatization strategy. Journal of Materials Chemistry B, 2020 , 8, 6792-6797	7.3	7
13	Nanopore Fabrication and Application as Biosensors in Neurodegenerative Diseases. <i>Critical Reviews in Biomedical Engineering</i> , 2020 , 48, 29-62	1.1	3
12	Insight into the effects of electrochemical factors on host-guest interaction induced signature events in a biological nanopore. <i>Nami Jishu Yu Jingmi Gongcheng/Nanotechnology and Precision Engineering</i> , 2020 , 3, 2-8	2.4	6
11	Longer and Stronger: Improving Persistent Luminescence in Size-Tuned Zinc Gallate Nanoparticles by Alcohol-Mediated Chromium Doping. <i>ACS Nano</i> , 2020 , 14, 12113-12124	16.7	21
10	Biocompatible off-stoichiometric copper indium sulfide quantum dots with tunable near-infrared emission via aqueous based synthesis. <i>Chemical Communications</i> , 2019 , 55, 15053-15056	5.8	11
9	Narrowing the Photoluminescence of Aqueous CdTe Quantum Dots via Ostwald Ripening Suppression Realized by Programmed Dropwise Precursor Addition. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 11109-11118	3.8	12
8	Molecular mechanisms for delicately tuning the morphology and properties of Fe3O4 nanoparticle clusters. <i>CrystEngComm</i> , 2018 , 20, 2421-2429	3.3	8
7	Magnetically Aligned Co-C/MWCNTs Composite Derived from MWCNT-Interconnected Zeolitic Imidazolate Frameworks for a Lightweight and Highly Efficient Electromagnetic Wave Absorber. <i>ACS Applied Materials & Discorphy (Materials & Materials & Materia</i>	9.5	211
6	The Yin and Yang of coordinating co-solvents in the size-tuning of FeO nanocrystals through flow synthesis. <i>Nanoscale</i> , 2017 , 9, 18609-18612	7.7	11
5	Differently sized magnetic/upconversion luminescent NaGdF4:Yb,Er nanocrystals: flow synthesis and solvent effects. <i>Chemical Communications</i> , 2016 , 52, 5872-5	5.8	26

LIST OF PUBLICATIONS

4	Porous CNTs/Co Composite Derived from Zeolitic Imidazolate Framework: A Lightweight, Ultrathin, and Highly Efficient Electromagnetic Wave Absorber. <i>ACS Applied Materials & Design Section</i> , 2016, 8, 34686-34698	9.5	306
3	Magnetic-luminescent YbPO4:Er,Dy microspheres designed for tumor theranostics with synergistic effect of photodynamic therapy and chemotherapy. <i>International Journal of Nanomedicine</i> , 2014 , 9, 4879	⁷ -91	10
2	ZnO:Er,Yb,Gd Particles Designed for Magnetic-Fluorescent Imaging and Near-Infrared Light Triggered Photodynamic Therapy. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 23716-23729	3.8	30
1	Preparation and characterization of ZnS:Tb,Gd and ZnS:Er,Yb,Gd nanoparticles for bimodal magnetic-fluorescent imaging. <i>Dalton Transactions</i> , 2013 , 42, 1752-9	4.3	22