Xiaojun Wei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5377158/publications.pdf Version: 2024-02-01

		687335	677123
22	1,073	13	22
papers	citations	h-index	g-index
23	23	23	1246
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Porous CNTs/Co Composite Derived from Zeolitic Imidazolate Framework: A Lightweight, Ultrathin, and Highly Efficient Electromagnetic Wave Absorber. ACS Applied Materials & Interfaces, 2016, 8, 34686-34698.	8.0	427
2	Magnetically Aligned Co–C/MWCNTs Composite Derived from MWCNT-Interconnected Zeolitic Imidazolate Frameworks for a Lightweight and Highly Efficient Electromagnetic Wave Absorber. ACS Applied Materials & Interfaces, 2017, 9, 30850-30861.	8.0	282
3	Longer and Stronger: Improving Persistent Luminescence in Size-Tuned Zinc Gallate Nanoparticles by Alcohol-Mediated Chromium Doping. ACS Nano, 2020, 14, 12113-12124.	14.6	50
4	Multiplex quantitative detection of SARS-CoV-2 specific IgG and IgM antibodies based on DNA-assisted nanopore sensing. Biosensors and Bioelectronics, 2021, 181, 113134.	10.1	43
5	ZnO:Er,Yb,Gd Particles Designed for Magnetic-Fluorescent Imaging and Near-Infrared Light Triggered Photodynamic Therapy. Journal of Physical Chemistry C, 2013, 117, 23716-23729.	3.1	33
6	Differently sized magnetic/upconversion luminescent NaGdF ₄ :Yb,Er nanocrystals: flow synthesis and solvent effects. Chemical Communications, 2016, 52, 5872-5875.	4.1	28
7	Preparation and characterization of ZnS:Tb,Gd and ZnS:Er,Yb,Gd nanoparticles for bimodal magnetic-fluorescent imaging. Dalton Transactions, 2013, 42, 1752-1759.	3.3	27
8	Biocompatible off-stoichiometric copper indium sulfide quantum dots with tunable near-infrared emission <i>via</i> aqueous based synthesis. Chemical Communications, 2019, 55, 15053-15056.	4.1	24
9	N-Terminal Derivatization-Assisted Identification of Individual Amino Acids Using a Biological Nanopore Sensor. ACS Sensors, 2020, 5, 1707-1716.	7.8	21
10	Enabling nanopore technology for sensing individual amino acids by a derivatization strategy. Journal of Materials Chemistry B, 2020, 8, 6792-6797.	5.8	20
11	Narrowing the Photoluminescence of Aqueous CdTe Quantum Dots via Ostwald Ripening Suppression Realized by Programmed Dropwise Precursor Addition. Journal of Physical Chemistry C, 2018, 122, 11109-11118.	3.1	16
12	Insight into the effects of electrochemical factors on host-guest interaction induced signature events in a biological nanopore. Nami Jishu Yu Jingmi Gongcheng/Nanotechnology and Precision Engineering, 2020, 3, 2-8.	3.2	15
13	The Yin and Yang of coordinating co-solvents in the size-tuning of Fe ₃ O ₄ nanocrystals through flow synthesis. Nanoscale, 2017, 9, 18609-18612.	5.6	14
14	In vitro biosensing of β-Amyloid peptide aggregation dynamics using a biological nanopore. Sensors and Actuators B: Chemical, 2021, 338, 129863.	7.8	13
15	Magnetic-luminescent YbPO4:Er,Dy microspheres designed for tumor theranostics with synergistic effect of photodynamic therapy and chemotherapy. International Journal of Nanomedicine, 2014, 9, 4879.	6.7	12
16	Molecular mechanisms for delicately tuning the morphology and properties of Fe ₃ O ₄ nanoparticle clusters. CrystEngComm, 2018, 20, 2421-2429.	2.6	11
17	Turning-on persistent luminescence out of chromium-doped zinc aluminate nanoparticles by instilling antisite defects under mild conditions. Nanoscale, 2021, 13, 8514-8523.	5.6	10
18	Continuous Flow Synthesis of Persistent Luminescent Chromium-Doped Zinc Gallate Nanoparticles. Journal of Physical Chemistry Letters, 2021, 12, 7067-7075.	4.6	8

XIAOJUN WEI

#	Article	IF	CITATIONS
19	Nanopore-based disease diagnosis using pathogen-derived tryptic peptides from serum. Nano Today, 2022, 45, 101515.	11.9	8
20	Nanopore Fabrication and Application as Biosensors in Neurodegenerative Diseases. Critical Reviews in Biomedical Engineering, 2020, 48, 29-62.	0.9	7
21	Nanopore sensing of γ yclodextrin induced hostâ€guest interaction to reverse the binding of perfluorooctanoic acid to human serum albumin. Proteomics, 2022, 22, e2100058.	2.2	3
22	Translocation Behaviors of Synthetic Polyelectrolytes through Alpha-Hemolysin (α-HL) and Mycobacterium smegmatis Porin A (MspA) Nanopores. Journal of the Electrochemical Society, 2022, 169, 057510.	2.9	1