Mary J Biddy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5376517/publications.pdf

Version: 2024-02-01

		279798	454955
31	2,426	23	30
papers	citations	h-index	g-index
34	34	34	3544
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Cellulosic ethanol: status and innovation. Current Opinion in Biotechnology, 2017, 45, 202-211.	6.6	316
2	A perspective on oxygenated species in the refinery integration of pyrolysis oil. Green Chemistry, 2014, 16, 407-453.	9.0	235
3	Lignin depolymerisation by nickel supported layered-double hydroxide catalysts. Green Chemistry, 2014, 16, 824-835.	9.0	161
4	Role of the Support and Reaction Conditions on the Vapor-Phase Deoxygenation of <i>m</i> -Cresol over Pt/C and Pt/TiO ₂ Catalysts. ACS Catalysis, 2016, 6, 2715-2727.	11.2	123
5	Renewable acrylonitrile production. Science, 2017, 358, 1307-1310.	12.6	122
6	The Techno-Economic Basis for Coproduct Manufacturing To Enable Hydrocarbon Fuel Production from Lignocellulosic Biomass. ACS Sustainable Chemistry and Engineering, 2016, 4, 3196-3211.	6.7	121
7	Succinic acid production on xylose-enriched biorefinery streams by Actinobacillus succinogenes in batch fermentation. Biotechnology for Biofuels, 2016, 9, 28.	6.2	120
8	Life cycle assessment of adipic acid production from lignin. Green Chemistry, 2018, 20, 3857-3866.	9.0	116
9	Alkaline Pretreatment of Corn Stover: Bench-Scale Fractionation and Stream Characterization. ACS Sustainable Chemistry and Engineering, 2014, 2, 1481-1491.	6.7	109
10	Techno-economic analysis and life cycle assessment of a biorefinery utilizing reductive catalytic fractionation. Energy and Environmental Science, 2021, 14, 4147-4168.	30.8	106
11	Exploring Comparative Energy and Environmental Benefits of Virgin, Recycled, and Bio-Derived PET Bottles. ACS Sustainable Chemistry and Engineering, 2018, 6, 9725-9733.	6.7	85
12	Techno-economic analysis for upgrading the biomass-derived ethanol-to-jet blendstocks. Green Chemistry, 2017, 19, 1082-1101.	9.0	73
13	Current and Future United States Light-Duty Vehicle Pathways: Cradle-to-Grave Lifecycle Greenhouse Gas Emissions and Economic Assessment. Environmental Science & Emp; Technology, 2018, 52, 2392-2399.	10.0	72
14	Gasoline from Woody Biomass via Thermochemical Gasification, Methanol Synthesis, and Methanol-to-Gasoline Technologies: A Technoeconomic Analysis. Industrial & Engineering Chemistry Research, 2011, 50, 11734-11745.	3.7	68
15	Aqueous Stream Characterization from Biomass Fast Pyrolysis and Catalytic Fast Pyrolysis. ACS Sustainable Chemistry and Engineering, 2016, 4, 6815-6827.	6.7	54
16	Lifeâ€cycle analysis of integrated biorefineries with coâ€production of biofuels and bioâ€based chemicals: coâ€product handling methods and implications. Biofuels, Bioproducts and Biorefining, 2018, 12, 815-833.	3.7	53
17	Conceptual process design and economics for the production of highâ€octane gasoline blendstock via indirect liquefaction of biomass through methanol/dimethyl ether intermediates. Biofuels, Bioproducts and Biorefining, 2016, 10, 17-35.	3.7	45
18	Technoâ€economics of the production of mixed alcohols from lignocellulosic biomass via highâ€temperature gasification. Environmental Progress and Sustainable Energy, 2010, 29, 163-174.	2.3	42

#	Article	IF	CITATIONS
19	Performance-advantaged ether diesel bioblendstock production by a priori design. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26421-26430.	7.1	39
20	Clean Fractionation Pretreatment Reduces Enzyme Loadings for Biomass Saccharification and Reveals the Mechanism of Free and Cellulosomal Enzyme Synergy. ACS Sustainable Chemistry and Engineering, 2014, 2, 1377-1387.	6.7	35
21	Recovery of Fuel-Precursor Lipids from Oleaginous Yeast. ACS Sustainable Chemistry and Engineering, 2018, 6, 2921-2931.	6.7	29
22	Environmental, Economic, and Scalability Considerations and Trends of Selected Fuel Economy-Enhancing Biomass-Derived Blendstocks. ACS Sustainable Chemistry and Engineering, 2018, 6, 561-569.	6.7	28
23	Economic and environmental potentials for natural gas to enhance biomass-to-liquid fuels technologies. Green Chemistry, 2018, 20, 5358-5373.	9.0	26
24	Techno-Economic Analysis and Life-Cycle Analysis of Two Light-Duty Bioblendstocks: Isobutanol and Aromatic-Rich Hydrocarbons. ACS Sustainable Chemistry and Engineering, 2018, 6, 8790-8800.	6.7	18
25	A low-cost solid–liquid separation process for enzymatically hydrolyzed corn stover slurries. Bioresource Technology, 2015, 187, 37-42.	9.6	17
26	Energy, economic, and environmental benefits assessment of co-optimized engines and bio-blendstocks. Energy and Environmental Science, 2020, 13, 2262-2274.	30.8	16
27	Co-optimization of Heavy-Duty Fuels and Engines: Cost Benefit Analysis and Implications. Environmental Science & Environmental	10.0	14
28	Environmental, Economic, and Scalability Considerations of Selected Bio-Derived Blendstocks for Mixing-Controlled Compression Ignition Engines. ACS Sustainable Chemistry and Engineering, 2022, 10, 6699-6712.	6.7	13
29	Emulsion polymerization of acrylonitrile in aqueous methanol. Green Chemistry, 2018, 20, 5299-5310.	9.0	8
30	Integrated conversion of 1-butanol to 1,3-butadiene. RSC Advances, 2018, 8, 24068-24074.	3.6	7
31	Chemicals Derived From Biomass Thermolysis and Gasification. , 2017, , 587-600.		2