Hao Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5376363/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electrolytic cell engineering and device optimization for electrosynthesis of e-biofuels via co-valorisation of bio-feedstocks and captured CO2. Frontiers of Chemical Science and Engineering, 2021, 15, 208-219.	4.4	8
2	How to go beyond C ₁ products with electrochemical reduction of CO ₂ . Sustainable Energy and Fuels, 2021, 5, 5893-5914.	4.9	19
3	Structured Electrodes with Accurately Controllable Channels Enabled by Hybrid 3D Printing. Energy & Fuels, 2021, 35, 19791-19800.	5.1	1
4	A review of non-precious metal single atom confined nanomaterials in different structural dimensions (1D–3D) as highly active oxygen redox reaction electrocatalysts. Journal of Materials Chemistry A, 2020, 8, 2222-2245.	10.3	59
5	The future of sustainable chemistry and process: Convergence of artificial intelligence, data and hardware. Energy and Al, 2020, 2, 100036.	10.6	12
6	Seeing is Believing: In Situ/Operando Optical Microscopy for Probing Electrochemical Energy Systems. Advanced Materials Technologies, 2020, 5, 2000555.	5.8	33
7	pH-differential design and operation of electrochemical and photoelectrochemical systems with bipolar membrane. Applied Energy, 2020, 268, 115053.	10.1	16
8	Energy Storage: Hybrid Manufacturing of 3D Hierarchical Porous Carbons for Electrochemical Storage (Adv. Mater. Technol. 6/2020). Advanced Materials Technologies, 2020, 5, 2070034.	5.8	3
9	Hybrid Manufacturing of 3D Hierarchical Porous Carbons for Electrochemical Storage. Advanced Materials Technologies, 2020, 5, 1901030.	5.8	19
10	Rational design of photoelectrochemical cells towards bias-free water splitting: Thermodynamic and kinetic insights. Journal of Power Sources, 2020, 462, 228113.	7.8	15
11	Structured Zeolite Monoliths with Ultrathin Framework for Fast CO ₂ Adsorption Enabled by 3D Printing. Industrial & Engineering Chemistry Research, 2020, 59, 8223-8229.	3.7	27
12	Enabling separation intensification of a lanthanide pair with closely similar kinetics based on droplet microfluidics: hydrodynamic and kinetic approaches. Reaction Chemistry and Engineering, 2019, 4, 1410-1420.	3.7	3
13	Rapid Synthesis of Porous Graphene Microspheres through a Three-Dimensionally Printed Inkjet Nozzle for Selective Pollutant Removal from Water. ACS Omega, 2019, 4, 20509-20518.	3.5	6
14	Accelerating Fuel Cell Development with Additive Manufacturing Technologies: State of the Art, Opportunities and Challenges. Fuel Cells, 2019, 19, 636-650.	2.4	40
15	Toward a mechanistic understanding of microfluidic droplet-based extraction and separation of lanthanides. Chemical Engineering Journal, 2019, 356, 673-679.	12.7	26
16	Numerical investigation and optimization of vapor-feed microfluidic fuel cells with high fuel utilization. Electrochimica Acta, 2018, 261, 127-136.	5.2	27
17	Advanced gas-emission anode design for microfluidic fuel cell eliminating bubble accumulation. Journal of Micromechanics and Microengineering, 2017, 27, 105016.	2.6	12
18	Numerical and experimental comparative study of microfluidic fuel cells with different flow configurations: Co-flow vs. counter-flow cell. Applied Energy, 2017, 203, 535-548.	10.1	46

Hao Zhang

#	Article	IF	CITATIONS
19	Understanding the performance of optofluidic fuel cells: Experimental and theoretical analyses. Chemical Engineering Journal, 2016, 283, 1455-1464.	12.7	17
20	A Counter-flow Microfluidic Fuel Cell Achieving Concentrated Fuel Operation. Energy Procedia, 2015, 75, 1990-1995.	1.8	7
21	Counter-flow formic acid microfluidic fuel cell with high fuel utilization exceeding 90%. Applied Energy, 2015, 160, 930-936.	10.1	49
22	A Theoretical Study on Photocatalytic Fuel Cell. Energy Procedia, 2014, 61, 246-249.	1.8	13
23	Solar photocatalytic fuel cell using CdS–TiO2 photoanode and air-breathing cathode for wastewater treatment and simultaneous electricity production. Chemical Engineering Journal, 2014, 253, 174-182.	12.7	88
24	A Numerical Study on Microfluidic Fuel Cell: Improving Fuel Utilization and Fuel Operation Concentration. Energy Procedia, 2014, 61, 250-253.	1.8	8
25	Enabling high-concentrated fuel operation of fuel cells with microfluidic principles: A feasibility study. Applied Energy, 2013, 112, 1131-1137.	10.1	39
26	Energy and exergy analysis of microfluidic fuel cell. International Journal of Hydrogen Energy, 2013, 38, 6526-6536.	7.1	31
27	CdS Quantum Dots-Sensitized TiO ₂ Nanorod Array on Transparent Conductive Glass Photoelectrodes. Journal of Physical Chemistry C, 2010, 114, 16451-16455.	3.1	288
28	Hierarchically Structured Components: Design, Additive Manufacture, and Their Energy Applications. Advanced Materials Technologies, 0, , 2100672.	5.8	4