Oleh Taratula

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5376321/publications.pdf Version: 2024-02-01

Οι εμ Τλρλτιιλ

#	Article	IF	CITATIONS
1	Targeted Nanoparticles with High Heating Efficiency for the Treatment of Endometriosis with Systemically Delivered Magnetic Hyperthermia. Small, 2022, 18, e2107808.	10.0	17
2	Nanomedicines for Endometriosis: Lessons Learned from Cancer Research. Small, 2021, 17, e2004975.	10.0	30
3	A novel multimodal nanoplatform for targeting tumor necrosis. RSC Advances, 2021, 11, 29486-29497.	3.6	1
4	Near-Infrared Heptamethine Cyanine Dyes for Nanoparticle-Based Photoacoustic Imaging and Photothermal Therapy. Journal of Medicinal Chemistry, 2021, 64, 8798-8805.	6.4	25
5	Discovery and Validation of a Compound to Target Ewing's Sarcoma. Pharmaceutics, 2021, 13, 1553.	4.5	5
6	A targeted combinatorial therapy for Ewing's sarcoma. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 37, 102446.	3.3	6
7	Targeting Estrogen Receptor-Positive Breast Microtumors with Endoxifen-Conjugated, Hypoxia-Sensitive Polymersomes. ACS Omega, 2021, 6, 27654-27667.	3.5	6
8	Systemically Delivered Magnetic Hyperthermia for Prostate Cancer Treatment. Pharmaceutics, 2020, 12, 1020.	4.5	35
9	Endometriosis Treatment: Nanoparticleâ€Based Platform for Activatable Fluorescence Imaging and Photothermal Ablation of Endometriosis (Small 18/2020). Small, 2020, 16, 2070101.	10.0	0
10	Biodegradable Hypericin-Containing Nanoparticles for Necrosis Targeting and Fluorescence Imaging. Molecular Pharmaceutics, 2020, 17, 1538-1545.	4.6	16
11	DNA Photocleavage in the Near-Infrared Wavelength Range by 2-Quinolinium Dicarbocyanine Dyes. Molecules, 2020, 25, 2926.	3.8	9
12	Nanoparticleâ€Based Platform for Activatable Fluorescence Imaging and Photothermal Ablation of Endometriosis. Small, 2020, 16, e1906936.	10.0	32
13	Nanocarrier-based systems for targeted and site specific therapeutic delivery. Advanced Drug Delivery Reviews, 2019, 144, 57-77.	13.7	171
14	Transarterial Delivery of a Biodegradable Single-Agent Theranostic Nanoprobe for Liver Tumor Imaging and Combinatorial Phototherapy. Journal of Vascular and Interventional Radiology, 2019, 30, 1480-1486.e2.	0.5	10
15	Biocompatible Nanoclusters with High Heating Efficiency for Systemically Delivered Magnetic Hyperthermia. ACS Nano, 2019, 13, 6383-6395.	14.6	165
16	Single photon DNA photocleavage at 830 nm by quinoline dicarbocyanine dyes. Chemical Communications, 2019, 55, 12667-12670.	4.1	9
17	Strategy to enhance lung cancer treatment by five essential elements: inhalation delivery, nanotechnology, tumor-receptor targeting, chemo- and gene therapy. Theranostics, 2019, 9, 8362-8376.	10.0	90
18	Intraperitoneal nanotherapy for metastatic ovarian cancer based on siRNA-mediated suppression of DJ-1 protein combined with a low dose of cisplatin. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 1395-1405.	3.3	21

Oleh Taratula

#	Article	IF	CITATIONS
19	Increasing lean muscle mass in mice via nanoparticle-mediated hepatic delivery of follistatin mRNA. Theranostics, 2018, 8, 5276-5288.	10.0	32
20	A Preliminary Proteomic Investigation of Circulating Exosomes and Discovery of Biomarkers Associated with the Progression of Osteosarcoma in a Clinical Model of Spontaneous Disease. Translational Oncology, 2018, 11, 1137-1146.	3.7	41
21	A Tumor-Activatable Theranostic Nanomedicine Platform for NIR Fluorescence-Guided Surgery and Combinatorial Phototherapy. Theranostics, 2018, 8, 767-784.	10.0	67
22	Exosomes from Osteosarcoma and normal osteoblast differ in proteomic cargo and immunomodulatory effects on T cells. Experimental Cell Research, 2017, 358, 369-376.	2.6	58
23	Phototheranostic nanoplatform based on a single cyanine dye for image-guided combinatorial phototherapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 955-963.	3.3	43
24	LHRH-Targeted Drug Delivery Systems for Cancer Therapy. Mini-Reviews in Medicinal Chemistry, 2017, 17, 258-267.	2.4	49
25	Mechanistic Nanotherapeutic Approach Based on siRNA-Mediated DJ-1 Protein Suppression for Platinum-Resistant Ovarian Cancer. Molecular Pharmaceutics, 2016, 13, 2070-2083.	4.6	29
26	Precision targeted therapy of ovarian cancer. Journal of Controlled Release, 2016, 243, 250-268.	9.9	59
27	Mesenchymal Stromal Cell-derived Extracellular Vesicles Promote Myeloid-biased Multipotent Hematopoietic Progenitor Expansion via Toll-Like Receptor Engagement. Journal of Biological Chemistry, 2016, 291, 24607-24617.	3.4	50
28	Phthalocyanine-loaded graphene nanoplatform for imaging-guided combinatorial phototherapy. International Journal of Nanomedicine, 2015, 10, 2347.	6.7	68
29	ROS-induced nanotherapeutic approach for ovarian cancer treatment based on the combinatorial effect of photodynamic therapy and DJ-1 gene suppression. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 1961-1970.	3.3	35
30	Naphthalocyanine-Based Biodegradable Polymeric Nanoparticles for Image-Guided Combinatorial Phototherapy. Chemistry of Materials, 2015, 27, 6155-6165.	6.7	70
31	Dendrimer-encapsulated naphthalocyanine as a single agent-based theranostic nanoplatform for near-infrared fluorescence imaging and combinatorial anticancer phototherapy. Nanoscale, 2015, 7, 3888-3902.	5.6	118
32	Temperature-Tunable Iron Oxide Nanoparticles for Remote-Controlled Drug Release. AAPS PharmSciTech, 2014, 15, 963-972.	3.3	34
33	Inhalation treatment of lung cancer: the influence of composition, size and shape of nanocarriers on their lung accumulation and retention. Cancer Biology and Medicine, 2014, 11, 44-55.	3.0	88
34	Multifunctional nanomedicine platform for concurrent delivery of chemotherapeutic drugs and mild hyperthermia to ovarian cancer cells. International Journal of Pharmaceutics, 2013, 458, 169-180.	5.2	68
35	A Multifunctional Theranostic Platform Based on Phthalocyanine-Loaded Dendrimer for Image-Guided Drug Delivery and Photodynamic Therapy. Molecular Pharmaceutics, 2013, 10, 3946-3958.	4.6	131
36	Nanostructured lipid carriers as multifunctional nanomedicine platform for pulmonary co-delivery of anticancer drugs and siRNA. Journal of Controlled Release, 2013, 171, 349-357.	9.9	331

Oleh Taratula

#	ARTICLE	IF	CITATIONS
37	Targeted Nanomedicine for Suppression of CD44 and Simultaneous Cell Death Induction in Ovarian Cancer: An Optimal Delivery of siRNA and Anticancer Drug. Clinical Cancer Research, 2013, 19, 6193-6204.	7.0	149
38	Genotoxicity of Different Nanocarriers: Possible Modifications for the Delivery of Nucleic Acids. Current Drug Discovery Technologies, 2013, 10, 8-15.	1.2	3
39	Genotoxicity of Different Nanocarriers: Possible Modifications for the Delivery of Nucleic Acids. Current Drug Discovery Technologies, 2013, 10, 8-15.	1.2	24
40	Genotoxicity of different nanocarriers: possible modifications for the delivery of nucleic acids. Current Drug Discovery Technologies, 2013, 10, 8-15.	1.2	53
41	Poly(propyleneimine) dendrimers as potential siRNA delivery nanocarrier: from structure to function. International Journal of Nanotechnology, 2011, 8, 36.	0.2	28
42	Innovative strategy for treatment of lung cancer: targeted nanotechnology-based inhalation co-delivery of anticancer drugs and siRNA. Journal of Drug Targeting, 2011, 19, 900-914.	4.4	205
43	Multifunctional Nanomedicine Platform for Cancer Specific Delivery of siRNA by Superparamagnetic Iron Oxide Nanoparticles-Dendrimer Complexes. Current Drug Delivery, 2011, 8, 59-69.	1.6	137
44	Tumor targeted quantum dot-mucin 1 aptamer-doxorubicin conjugate for imaging and treatment of cancer. Journal of Controlled Release, 2011, 153, 16-22.	9.9	294
45	DNA and carbon nanotubes as medicine. Advanced Drug Delivery Reviews, 2010, 62, 633-649.	13.7	180
46	Labile Catalytic Packaging of DNA/siRNA: Control of Gold Nanoparticles "out―of DNA/siRNA Complexes. ACS Nano, 2010, 4, 3679-3688.	14.6	61
47	Surface-engineered targeted PPI dendrimer for efficient intracellular and intratumoral siRNA delivery. Journal of Controlled Release, 2009, 140, 284-293.	9.9	305
48	Coâ€delivery of Doxorubicin and Bclâ€2 siRNA by Mesoporous Silica Nanoparticles Enhances the Efficacy of Chemotherapy in Multidrugâ€Resistant Cancer Cells. Small, 2009, 5, 2673-2677.	10.0	613
49	Internally Cationic Polyamidoamine PAMAM-OH Dendrimers for siRNA Delivery: Effect of the Degree of Quaternization and Cancer Targeting. Biomacromolecules, 2009, 10, 258-266.	5.4	202
50	Surface-Modified and Internally Cationic Polyamidoamine Dendrimers for Efficient siRNA Delivery. Bioconjugate Chemistry, 2008, 19, 1396-1403.	3.6	196
51	Highly Aligned Ribbon-Shaped Pd Nanoparticle Assemblies by Spontaneous Organization. Journal of Physical Chemistry C, 2007, 111, 7666-7670.	3.1	10