Davide Bertelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5376235/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Disclosing the Antioxidant and Neuroprotective Activity of an Anthocyanin-Rich Extract from Sweet Cherry (Prunus avium L.) Using In Vitro and In Vivo Models. Antioxidants, 2022, 11, 211.	2.2	6
2	<i>In vitro</i> bioactivity evaluation of mulberry leaf extracts as nutraceuticals for the management of diabetes mellitus. Food and Function, 2022, 13, 4344-4359.	2.1	12
3	Characterization and Valorization of the Agricultural Waste Obtained from Lavandula Steam Distillation for Its Reuse in the Food and Pharmaceutical Fields. Molecules, 2022, 27, 1613.	1.7	23
4	HRâ€ ¹ H NMR spectroscopy and multivariate statistical analysis to determine the composition of herbal mixtures for infusions. Phytochemical Analysis, 2021, 32, 544-553.	1.2	8
5	Attenuated total reflectance–Fourier transform infrared (ATR–FTIR) spectroscopy coupled with chemometric analysis for detection and quantification of adulteration in lavender and citronella essential oils. Phytochemical Analysis, 2021, 32, 907-920.	1.2	16
6	Effect of a dietary inclusion of full-fat or defatted silkworm pupa meal on the nutrient digestibility and faecal microbiome of fattening quails. Animal, 2021, 15, 100112.	1.3	14
7	Novel Strategy for the Recognition of Adulterant Vegetable Oils in Essential Oils Commonly Used in Food Industries by Applying ¹³ C NMR Spectroscopy. Journal of Agricultural and Food Chemistry, 2021, 69, 8276-8286.	2.4	23
8	Determination of 1-Deoxynojirimycin (1-DNJ) in Leaves of Italian or Italy-Adapted Cultivars of Mulberry (Morus sp.pl.) by HPLC-MS. Plants, 2021, 10, 1553.	1.6	12
9	A Novel qNMR Application for the Quantification of Vegetable Oils Used as Adulterants in Essential Oils. Molecules, 2021, 26, 5439.	1.7	14
10	Separation and non-separation methods for the analysis of cannabinoids in Cannabis sativa L Journal of Pharmaceutical and Biomedical Analysis, 2021, 206, 114346.	1.4	10
11	Effects of Biostimulants on the Chemical Composition of Essential Oil and Hydrosol of Lavandin (Lavandula x intermedia Emeric ex Loisel.) Cultivated in Tuscan-Emilian Apennines. Molecules, 2021, 26, 6157.	1.7	10
12	Optimization and Validation of a High-Performance Liquid Chromatography Method for the Analysis of Hesperidin and Carvacrol for Veterinary Use. American Journal of Analytical Chemistry, 2021, 12, 459-470.	0.3	3
13	New Insights into Bioactive Compounds from the Medicinal Plant Spathodea campanulata P. Beauv. and Their Activity against Helicobacter pylori. Antibiotics, 2020, 9, 258.	1.5	4
14	A community-built calibration system: The case study of quantification of metabolites in grape juice by qNMR spectroscopy. Talanta, 2020, 214, 120855.	2.9	14
15	Innovative methods for the preparation of medical Cannabis oils with a high content of both cannabinoids and terpenes. Journal of Pharmaceutical and Biomedical Analysis, 2020, 186, 113296.	1.4	45
16	Use of 1H NMR to Detect the Percentage of Pure Fruit Juices in Blends. Molecules, 2019, 24, 2592.	1.7	19
17	Identification and determination of bioactive phenylpropanoid glycosides of Aloysia polystachya (Griseb. et Moldenke) by HPLC-MS. Journal of Pharmaceutical and Biomedical Analysis, 2019, 166, 364-370.	1.4	24
18	Use of 13C-qNMR Spectroscopy for the Analysis of Non-Psychoactive Cannabinoids in Fibre-Type Cannabis sativa L. (Hemp). Molecules, 2019, 24, 1138.	1.7	21

DAVIDE BERTELLI

#	Article	IF	CITATIONS
19	Development of a new method for the analysis of cannabinoids in honey by means of high-performance liquid chromatography coupled with electrospray ionisation-tandem mass spectrometry detection. Journal of Chromatography A, 2019, 1597, 179-186.	1.8	34
20	Standard methods for <i>Apis mellifera</i> propolis research. Journal of Apicultural Research, 2019, 58, 1-49.	0.7	173
21	Nuclear magnetic resonance and high-performance liquid chromatography techniques for the characterization of bioactive compounds from Humulus lupulus L. (hop). Analytical and Bioanalytical Chemistry, 2018, 410, 3521-3531.	1.9	17
22	Chemical composition of Italian propolis of different ecoregional origin. Journal of Apicultural Research, 2018, 57, 639-647.	0.7	13
23	New Methods for the Comprehensive Analysis of Bioactive Compounds in Cannabis sativa L. (hemp). Molecules, 2018, 23, 2639.	1.7	130
24	Analytical methods for the study of bioactive compounds from medicinally used Echinacea species. Journal of Pharmaceutical and Biomedical Analysis, 2018, 160, 443-477.	1.4	35
25	Novel 2D-NMR Approach for the Classification of Balsamic Vinegars of Modena. Journal of Agricultural and Food Chemistry, 2017, 65, 5421-5426.	2.4	5
26	In vitro bioaccessibility, transepithelial transport and antioxidant activity of Urtica dioica L. phenolic compounds in nettle based food products. Food and Function, 2016, 7, 4222-4230.	2.1	19
27	Performance Assessment in Fingerprinting and Multi Component Quantitative NMR Analyses. Analytical Chemistry, 2015, 87, 6709-6717.	3.2	45
28	Traditional balsamic vinegar and balsamic vinegar of Modena analyzed by nuclear magnetic resonance spectroscopy coupled with multivariate data analysis. LWT - Food Science and Technology, 2015, 60, 1017-1024.	2.5	27
29	An analytical approach to Sr isotope ratio determination in Lambrusco wines for geographical traceability purposes. Food Chemistry, 2015, 173, 557-563.	4.2	60
30	Antioxidant Activity, Phenolic Compounds, and NMR Characterization of Balsamic and Traditional Balsamic Vinegar of Modena. Food Analytical Methods, 2015, 8, 371-379.	1.3	31
31	A mid level data fusion strategy for the Varietal Classification of Lambrusco PDO wines. Chemometrics and Intelligent Laboratory Systems, 2014, 137, 181-189.	1.8	60
32	In vivo penetration of bare and lipid-coated silica nanoparticles across the human stratum corneum. Colloids and Surfaces B: Biointerfaces, 2014, 122, 653-661.	2.5	15
33	Gas chromatography combined with mass spectrometry, flame ionization detection and elemental analyzer/isotope ratio mass spectrometry for characterizing and detecting the authenticity of commercial essential oils of <i>Rosa damascena</i> Mill Rapid Communications in Mass Spectrometry 2013, 27–591-602	0.7	35
34	An efficient chemical analysis of phenolic acids and flavonoids in raw propolis by microwave-assisted extraction combined with high-performance liquid chromatography using the fused-core technology. Journal of Pharmaceutical and Biomedical Analysis, 2013, 81-82, 126-132.	1.4	74
35	Comparative Evaluation of the Effect of Permeation Enhancers, Lipid Nanoparticles and Colloidal Silica on in vivo Human Skin Penetration of Quercetin. Skin Pharmacology and Physiology, 2013, 26, 57-67.	1.1	44
36	Application of One- and Two-Dimensional NMR Spectroscopy for the Characterization of Protected Designation of Origin Lambrusco Wines of Modena. Journal of Agricultural and Food Chemistry, 2013, 61, 1741-1746.	2.4	57

Davide Bertelli

#	Article	IF	CITATIONS
37	Use of <scp>HS</scp> â€ <scp>SPME</scp> â€ <scp>GC</scp> â€ <scp>MS</scp> for the classification of <scp>I</scp> talian lemon, orange and citrus spp. honeys. International Journal of Food Science and Technology, 2012, 47, 2352-2358.	1.3	14
38	Chemical and Functional Characterization of Italian Propolis Obtained by Different Harvesting Methods. Journal of Agricultural and Food Chemistry, 2012, 60, 2852-2862.	2.4	63
39	¹ Hâ€NMR Simultaneous Identification of Healthâ€Relevant Compounds in Propolis Extracts. Phytochemical Analysis, 2012, 23, 260-266.	1.2	72
40	Chromatographic Methods for Metabolite Profiling of Virus- and Phytoplasma-Infected Plants of <i>Echinacea purpurea</i> . Journal of Agricultural and Food Chemistry, 2011, 59, 10425-10434.	2.4	31
41	Microparticulate polyelectrolyte complexes for gentamicin transport across intestinal epithelia. Drug Delivery, 2011, 18, 26-37.	2.5	13
42	Detection of Honey Adulteration by Sugar Syrups Using One-Dimensional and Two-Dimensional High-Resolution Nuclear Magnetic Resonance. Journal of Agricultural and Food Chemistry, 2010, 58, 8495-8501.	2.4	143
43	Use of HRâ€NMR to classify propolis obtained using different harvesting methods. International Journal of Food Science and Technology, 2010, 45, 1610-1618.	1.3	21
44	Methyl anthranilate content in Italian citrus honeys determined by HSâ€&PMEâ€GC. International Journal of Food Science and Technology, 2009, 44, 1933-1938.	1.3	6
45	Development of an HS-SPME-GC method to determine the methyl anthranilate in Citrus honeys. Food Chemistry, 2008, 108, 297-303.	4.2	28
46	Classification of Italian Honeys by 2D HR-NMR. Journal of Agricultural and Food Chemistry, 2008, 56, 1298-1304.	2.4	72
47	Classification of Italian honeys by mid-infrared diffuse reflectance spectroscopy (DRIFTS). Food Chemistry, 2007, 101, 1565-1570.	4.2	62
48	Distribution of metals and phenolic compounds as a criterion to evaluate variety of berries and related jams. Food Chemistry, 2007, 100, 419-427.	4.2	59
49	Extraction and identification by GC-MS of phenolic acids in traditional balsamic vinegar from Modena. Journal of Food Composition and Analysis, 2006, 19, 49-54.	1.9	73
50	Headspace solid-phase microextraction-gas chromatography–mass spectrometry analysis of the volatile compounds of Evodia species fruits. Journal of Chromatography A, 2005, 1087, 265-273.	1.8	92
51	Effect of microwaves on volatile compounds in origanum. LWT - Food Science and Technology, 2003, 36, 555-560.	2.5	9
52	Effect of Microwaves on Volatile Compounds in White and Black Pepper. LWT - Food Science and Technology, 2002, 35, 260-264.	2.5	30
53	Mercury and Selenium Content in Selected Seafood. Journal of Food Composition and Analysis, 2001, 14, 461-467.	1.9	130
54	Dietary Fiber and Some Elements in Nuts and Wheat Brans. Journal of Food Composition and Analysis, 1999, 12, 91-96.	1.9	17

DAVIDE BERTELLI

#	Article	IF	CITATIONS
55	Separation by solid phase extraction and quantification by reverse phase HPLC of sulforaphane in broccoli. Food Chemistry, 1998, 63, 417-421.	4.2	56
56	Fruits of ribes, rubus, vaccinium and prunus genus. Metal contents and genome. Fresenius' Journal of Analytical Chemistry, 1998, 361, 353-354.	1.5	12
57	Determination of Aluminum and Zinc in Infant Formulas and Infant Foods. Journal of Food Composition and Analysis, 1997, 10, 36-42.	1.9	13