Antonios N Papadopoulos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5375673/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recent progress in ultra-low formaldehyde emitting adhesive systems and formaldehyde scavengers in wood-based panels: a review. Wood Material Science and Engineering, 2023, 18, 763-782.	1.1	80
2	Graphene as reinforcing filler in polyvinyl acetate resin. International Journal of Adhesion and Adhesives, 2022, 113, 103075.	1.4	8
3	Thermal Behavior of a Light Timber-Frame Wall vs. a Theoretical Simulation with Various Insulation Materials. Journal of Composites Science, 2022, 6, 22.	1.4	4
4	Cold Water Immersion Pretreatment of Post-Consuming Particleboards for Wood Chips Recovery by the Hydromechanical Process. Journal of Composites Science, 2022, 6, 105.	1.4	0
5	Effect of oxidizing thermal modification on the chemical properties and thermal conductivity of Norway spruce (<i>Picea abies</i> L.) wood. Wood Material Science and Engineering, 2022, 17, 366-375.	1.1	14
6	Influence of Lignin Content and Pressing Time on Plywood Properties Bonded with Cold-Setting Adhesive Based on Poly (Vinyl Alcohol), Lignin, and Hexamine. Polymers, 2022, 14, 2111.	2.0	21
7	Interdisciplinary Research to Advance Digital Imagery and Natural Compounds for Eco-Cleaning and for Preserving Textile Cultural Heritage. Sensors, 2022, 22, 4442.	2.1	7
8	Effects of Adsorption Energy on Air and Liquid Permeability of Nanowollastonite-Treated Medium-Density Fiberboard. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-8.	2.4	10
9	Nano-wollastonite to improve fire retardancy in medium-density fiberboard (MDF) made from wood fibers and camel-thorn. Wood Material Science and Engineering, 2021, 16, 161-165.	1.1	16
10	Advances in Wood Composites III. Polymers, 2021, 13, 163.	2.0	15
11	The Potential Use of Seaweed (Posidonia oceanica) as an Alternative Lignocellulosic Raw Material for Wood Composites Manufacture. Coatings, 2021, 11, 69.	1.2	20
12	Eco-Friendly Fiberboard Panels from Recycled Fibers Bonded with Calcium Lignosulfonate. Polymers, 2021, 13, 639.	2.0	40
13	Natural Tannins as New Cross-Linking Materials for Soy-Based Adhesives. Polymers, 2021, 13, 595.	2.0	37
14	Improving fire retardancy of unheated and heat-treated fir wood by nano-sepiolite. European Journal of Wood and Wood Products, 2021, 79, 841-849.	1.3	13
15	Thermal Transmittance, Dimensional Stability, and Mechanical Properties of a Three-Layer Laminated Wood Made from Fir and Meranti and Its Potential Application for Wood-Frame Windows. Coatings, 2021, 11, 304.	1.2	3
16	Wollastonite to Improve Fire Properties in Medium-Density Fiberboard Made from Wood and Chicken Feather Fibers. Applied Sciences (Switzerland), 2021, 11, 3070.	1.3	5
17	Effects of Wollastonite on Fire Properties of Particleboard Made from Wood and Chicken Feather Fibers. Coatings, 2021, 11, 518.	1.2	13
18	Fluid Flow of Polar and Less Polar Liquids through Modified Poplar Wood. Forests, 2021, 12, 482.	0.9	3

#	Article	IF	CITATIONS
19	Thermal and Mechanical Properties of Green Insulation Composites Made from Cannabis and Bark Residues. Journal of Composites Science, 2021, 5, 132.	1.4	22
20	Recent Developments in Lignin- and Tannin-Based Non-Isocyanate Polyurethane Resins for Wood Adhesives—A Review. Applied Sciences (Switzerland), 2021, 11, 4242.	1.3	83
21	Properties of High-Density Fiberboard Bonded with Urea–Formaldehyde Resin and Ammonium Lignosulfonate as a Bio-Based Additive. Polymers, 2021, 13, 2775.	2.0	45
22	Penetration of Different Liquids in Wood-Based Composites: The Effect of Adsorption Energy. Forests, 2021, 12, 63.	0.9	5
23	Bio-Based Polyurethane Resins Derived from Tannin: Source, Synthesis, Characterisation, and Application. Forests, 2021, 12, 1516.	0.9	30
24	Modeling the Bending Strength of MDF Faced, Polyurethane Foam-Cored Sandwich Panels Using Response Surface Methodology (RSM) and Artificial Neural Network (ANN). Forests, 2021, 12, 1514.	0.9	6
25	Biological resistance of nanoclay-treated plastic composites with different bamboo contents to three types of fungi. Journal of Thermoplastic Composite Materials, 2020, 33, 1048-1060.	2.6	7
26	Advances in Wood Composites. Polymers, 2020, 12, 48.	2.0	26
27	Formaldehyde Emission in Micron-Sized Wollastonite-Treated Plywood Bonded with Soy Flour and Urea-Formaldehyde Resin. Applied Sciences (Switzerland), 2020, 10, 6709.	1.3	29
28	Potential Use of Wollastonite as a Filler in UF Resin Based Medium-Density Fiberboard (MDF). Polymers, 2020, 12, 1435.	2.0	19
29	The effect of silver and copper nanoparticles as resin fillers on less-studied properties of UF-based particleboards. Wood Material Science and Engineering, 2020, , 1-11.	1.1	4
30	Durability of Accoya Wood in Ground Stake Testing after 10 Years of Exposure in Greece. Polymers, 2020, 12, 1638.	2.0	7
31	Advances in Wood Composites II. Polymers, 2020, 12, 1552.	2.0	12
32	Wood Composites and Their Polymer Binders. Polymers, 2020, 12, 1115.	2.0	112
33	Nanotechnology for wood quality improvement and protection. , 2020, , 469-489.		18
34	Improving fire retardancy of medium density fiberboard by nanoâ€wollastonite. Fire and Materials, 2020, 44, 759-766.	0.9	10
35	Improving Fire Retardancy of Beech Wood by Graphene. Polymers, 2020, 12, 303.	2.0	27
36	Enhancement of bending strength properties of two wood species reinforced with two types of carbon fibre fabrics and two layouts. International Wood Products Journal, 2020, 11, 64-69.	0.6	1

#	Article	IF	CITATIONS
37	Fluid Flow in Nanosilver-Impregnated Heat-Treated Beech Wood in Different Mediums. Applied Sciences (Switzerland), 2020, 10, 1919.	1.3	8
38	Engineering Composites Made from Wood and Chicken Feather Bonded with UF Resin Fortified with Wollastonite: A Novel Approach. Polymers, 2020, 12, 857.	2.0	29
39	Improving Thermal Conductivity Coefficient in Oriented Strand Lumber (OSL) Using Sepiolite. Nanomaterials, 2020, 10, 599.	1.9	18
40	Heat Treatment of Pine Wood: Possible Effect of Impregnation with Silver Nanosuspension. Forests, 2020, 11, 466.	0.9	22
41	Sorption behavior of water vapor of wood treated by chitosan polymer. European Journal of Wood and Wood Products, 2020, 78, 483-491.	1.3	10
42	SHEAR STRENGTH OF HEAT-TREATED SOLID WOOD BONDED WITH POLYVINYL-ACETATE REINFORCED BY NANOWOLLASTONITE. Wood Research, 2020, 65, 183-194.	0.2	11
43	Lignocellulosic Composites from Acetylated Sunflower Stalks. Applied Sciences (Switzerland), 2019, 9, 646.	1.3	12
44	Physical and Mechanical Properties of Thermally-Modified Beech Wood Impregnated with Silver Nano-Suspension and Their Relationship with the Crystallinity of Cellulose. Polymers, 2019, 11, 1538.	2.0	32
45	Specific gas permeability of normal and nanosilver-impregnated solid wood species as influenced by heat-treatment. Maderas: Ciencia Y Tecnologia, 2019, , 0-0.	0.7	3
46	Nanomaterials and Chemical Modifications for Enhanced Key Wood Properties: A Review. Nanomaterials, 2019, 9, 607.	1.9	91
47	Effect of wollastonite nanofibers and exposure to Aspergillus niger fungus on air flow rate in paper. Measurement: Journal of the International Measurement Confederation, 2019, 136, 307-313.	2.5	13
48	Fluid Flow in Cotton Textile: Effects of Wollastonite Nanosuspension and Aspergillus Niger Fungus. Processes, 2019, 7, 901.	1.3	4
49	Paint Pull-Off Strength and Permeability in Nanosilver-Impregnated and Heat-Treated Beech Wood. Coatings, 2019, 9, 723.	1.2	17
50	Mechanical and Physical Properties of Oriented Strand Lumber (OSL): The Effect of Fortification Level of Nanowollastonite on UF Resin. Polymers, 2019, 11, 1884.	2.0	19
51	Innovative Wood Surface Treatments Based on Nanotechnology. Coatings, 2019, 9, 866.	1.2	65
52	Fireâ€retarding properties of nanowollastonite in particleboard. Fire and Materials, 2018, 42, 306-315.	0.9	9
53	Effect of end connections on mid-span load capacity of laminated particleboard bookshelves. Wood Material Science and Engineering, 2018, 13, 231-235.	1.1	1
54	Wollastonite to hinder growth of Aspergillus niger fungus on cotton textile. Anais Da Academia Brasileira De Ciencias, 2018, 90, 2797-2804.	0.3	12

#	Article	IF	CITATIONS
55	Moisture adsorption isotherms of yew wood (Taxus baccata L.). European Journal of Wood and Wood Products, 2017, 75, 839-840.	1.3	0
56	Effects of densification on untreated and nano-aluminum-oxide impregnated poplar wood. Journal of Forestry Research, 2017, 28, 403-410.	1.7	18
57	EFFECTS OF NANO-SILANE ON THE PHYSICAL AND MECHANICAL PROPERTIES OF ORIENTED STRAND LUMBER (OSL). Bois Et Forets Des Tropiques, 2017, 330, 49.	0.2	3
58	Effects of Nano-Wollastonite on Screw Withdrawal Capacity of Oriented Strand Lumber. Journal of Nanomaterials & Molecular Nanotechnology, 2017, 06, .	0.1	3
59	Effects of wollastonite on the properties of medium-density fiberboard (MDF) made from wood fibers and camel-thorn. Maderas: Ciencia Y Tecnologia, 2016, , 0-0.	0.7	10
60	Effects of zinc and copper salicylate on biological resistance of particleboard against Anacanthotermes vagans termite. International Biodeterioration and Biodegradation, 2016, 115, 26-30.	1.9	8
61	Effects of wollastonite nanofibers on fluid flow in medium-density fiberboard. Journal of Forestry Research, 2016, 27, 209-217.	1.7	10
62	Effects of Drying Schedules on Physical and Mechanical Properties in Paulownia Wood. Drying Technology, 2015, 33, 1981-1990.	1.7	8
63	Effects of fungal exposure on air and liquid permeability of nanosilver- and nanozincoxide-impregnated Paulownia wood. International Biodeterioration and Biodegradation, 2015, 105, 51-57.	1.9	18
64	Effects of silver and copper nanoparticles in particleboard to control Trametes versicolor fungus. International Biodeterioration and Biodegradation, 2014, 94, 69-72.	1.9	32
65	Sorption of acetylated pine wood decayed by brown rot, white rot and soft rot: different fungi—different behaviours. Wood Science and Technology, 2012, 46, 919-926.	1.4	19
66	Toughness of pine wood chemically modified with acetic anhydride. European Journal of Wood and Wood Products, 2012, 70, 399-400.	1.3	5
67	Natural durability of acetylated OSB in ground stake test: total decay after 102 months of testing. European Journal of Wood and Wood Products, 2012, 70, 397-397.	1.3	6
68	Sorption studies of chemically modified elm wood with acetic or maleic anhydride. Journal of the Indian Academy of Wood Science, 2011, 8, 32-36.	0.3	3
69	The effect of acetylation on the Janka hardness of pine wood. European Journal of Wood and Wood Products, 2011, 69, 499-500.	1.3	13
70	Reducing the thickness swelling of wood based panels by applying a nanotechnology compound. European Journal of Wood and Wood Products, 2010, 68, 237-239.	1.3	27
71	Durability of particleboards made from wood particles chemically modified with propionic anhydride: results after six years inÂground stake-test. European Journal of Wood and Wood Products, 2010, 68, 353-354.	1.3	0
72	The sorption of water vapour of wood treated with a nanotechnology compound. Wood Science and Technology, 2010, 44, 515-522.	1.4	38

#	Article	IF	CITATIONS
73	Wood–straw composites bonded with various UF: EMDI formulations: the effect of fortification level. Journal of the Indian Academy of Wood Science, 2010, 7, 54-57.	0.3	1
74	The biological behaviours of pine wood modified with linear chain carboxylic acid anhydrides against soft rot fungi. International Biodeterioration and Biodegradation, 2010, 64, 409-412.	1.9	24
75	Social trends of the people of the region of Eastern Macedonia and Thrace-Greece: about the potential of using biofuels from forest products residues. The Environmentalist, 2009, 29, 333-335.	0.7	0
76	Decay resistance in ground stake-test of acetylated OSB after six years of testing. European Journal of Wood and Wood Products, 2009, 67, 365-366.	1.3	5
77	The effect of acetylation on bending strength of finger jointed beech wood (Fagus sylvatica L.). European Journal of Wood and Wood Products, 2008, 66, 309-310.	1.3	16
78	The biological effectiveness of wood modified with linear chain carboxylic acid anhydrides against the subterranean termites Reticulitermes flavipes. European Journal of Wood and Wood Products, 2008, 66, 249-252.	1.3	20
79	NATURAL DURABILITY AND PERFORMANCE OF HORNBEAM CEMENT BONDED PARTICLEBOARD. Maderas: Ciencia Y Tecnologia, 2008, 10, .	0.7	10
80	Pyridine-catalyst acetylation of pine wood: influence of mature sapwood vs juvenile wood. European Journal of Wood and Wood Products, 2006, 64, 134-136.	1.3	10
81	Mechanical and physical properties of cement-bonded OSB. European Journal of Wood and Wood Products, 2006, 64, 517-518.	1.3	32
82	Decay resistance in ground stake test of acetylated OSB. European Journal of Wood and Wood Products, 2006, 64, 245-246.	1.3	12
83	Moisture adsorption isotherms of two esterified Greek hardwoods. European Journal of Wood and Wood Products, 2005, 63, 123-128.	1.3	19
84	The sorption of water vapour by chemically modified softwood: analysis using various sorption models. Wood Science and Technology, 2005, 39, 99-111.	1.4	20
85	The potential for using flax (Linum usitatissimum L.) shiv as a lignocellulosic raw material for particleboard. Industrial Crops and Products, 2003, 17, 143-147.	2.5	78
86	The biological effectiveness of wood modified with linear chain carboxylic acid anhydrides against Coniophora puteana. European Journal of Wood and Wood Products, 2002, 60, 329-332.	1.3	81
87	Effects of adding nano-wollastonite, date palm prunings and two types of resins on the physical and mechanical properties of medium-density fibreboard (MDF) made from wood fibres. Bois Et Forets Des Tropiques, 0, 335, 49.	0.2	8
88	Developing adaptive neuro-fuzzy inference system-based models to predict the bending strength of polyurethane foam-cored sandwich panels. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 0, , 146442072110242.	0.7	0