
Jose Manuel Soria

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5375631/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The impact of sex on gene expression across human tissues. Science, 2020, 369, .	6.0	329
2	Genetic Susceptibility to Thrombosis and Its Relationship to Physiological Risk Factors: The GAIT Study. American Journal of Human Genetics, 2000, 67, 1452-1459.	2.6	306
3	Apolipoprotein(a) Genetic Sequence Variants Associated With Systemic Atherosclerosis and Coronary Atherosclerotic Burden But Not With Venous Thromboembolism. Journal of the American College of Cardiology, 2012, 60, 722-729.	1.2	149
4	Genetic and environmental factors influencing the human factor�H plasma levels. Immunogenetics, 2004, 56, 77-82.	1.2	145
5	The ABO blood group genotype and factor VIII levels as independent risk factors for venous thromboembolism. Thrombosis and Haemostasis, 2005, 93, 468-474.	1.8	134
6	lme4qtl: linear mixed models with flexible covariance structure for genetic studies of related individuals. BMC Bioinformatics, 2018, 19, 68.	1.2	123
7	Genome-wide association analysis of self-reported events in 6135 individuals and 252 827 controls identifies 8 loci associated with thrombosis. Human Molecular Genetics, 2016, 25, 1867-1874.	1.4	103
8	Genome-Wide Association Transethnic Meta-Analyses Identifies Novel Associations Regulating Coagulation Factor VIII and von Willebrand Factor Plasma Levels. Circulation, 2019, 139, 620-635.	1.6	102
9	A Quantitative-Trait Locus in the Human Factor XII Gene Influences Both Plasma Factor XII Levels and Susceptibility to Thrombotic Disease. American Journal of Human Genetics, 2002, 70, 567-574.	2.6	99
10	A Genomewide Exploration Suggests a New Candidate Gene at Chromosome 11q23 as the Major Determinant of Plasma Homocysteine Levels: Results from the GAIT Project. American Journal of Human Genetics, 2005, 76, 925-933.	2.6	90
11	A new locus on chromosome 18 that influences normal variation in activated protein C resistance phenotype and factor VIII activity and its relation to thrombosis susceptibility. Blood, 2003, 101, 163-167.	0.6	79
12	Genome-wide linkage analysis of von Willebrand factor plasma levels: results from the GAIT project. Thrombosis and Haemostasis, 2003, 89, 468-474.	1.8	77
13	Association after linkage analysis indicates that homozygosity for the 46C→T polymorphism in the F12 gene is a genetic risk factor for venous thrombosis. Thrombosis and Haemostasis, 2004, 91, 899-904.	1.8	68
14	A nonsense polymorphism in the protein Z-dependent protease inhibitor increases the risk for venous thrombosis. Blood, 2006, 108, 177-183.	0.6	58
15	Multilocus Genetic Risk Scores for Venous Thromboembolism Risk Assessment. Journal of the American Heart Association, 2014, 3, e001060.	1.6	58
16	Homozygosity of theTAllele of the 46 C→T Polymorphism in theF12Gene Is a Risk Factor for Ischemic Stroke in the Spanish Population. Stroke, 2004, 35, 1795-1799.	1.0	54
17	PDGFB, a new candidate plasma biomarker for venous thromboembolism: results from the VEREMA affinity proteomics study. Blood, 2016, 128, e59-e66.	0.6	39
18	Novel genes and sex differences in COVID-19 severity. Human Molecular Genetics, 2022, 31, 3789-3806.	1.4	38

#	Article	IF	CITATIONS
19	MISS: a non-linear methodology based on mutual information for genetic association studies in both population and sib-pairs analysis. Bioinformatics, 2010, 26, 1811-1818.	1.8	36
20	Genome-wide association study with additional genetic and post-transcriptional analyses reveals novel regulators of plasma factor XI levels. Human Molecular Genetics, 2017, 26, ddw401.	1.4	35
21	A genome-wide association study identifies new loci for factor VII and implicates factor VII in ischemic stroke etiology. Blood, 2019, 133, 967-977.	0.6	34
22	A Quantitative Trait Locus Influencing Free Plasma Protein S Levels on Human Chromosome 1q. Arteriosclerosis, Thrombosis, and Vascular Biology, 2003, 23, 508-511.	1.1	33
23	A Genome-Wide Association Study Identifies <i>KNG1</i> as a Genetic Determinant of Plasma Factor XI Level and Activated Partial Thromboplastin Time. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 2008-2016.	1.1	33
24	The prothrombin 20210A allele influences clinical manifestations of hemophilia A in patients with intron 22 inversion and without inhibitors. Haematologica, 2002, 87, 279-85.	1.7	33
25	Protein C Levels Are Regulated by a Quantitative Trait Locus on Chromosome 16. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24, 1321-1325.	1.1	31
26	Influence of Age, Gender and Lifestyle in Lymphocyte Subsets: Report from the Spanish Gait-2 Study. Acta Haematologica, 2012, 127, 244-249.	0.7	31
27	Identification of ZNF366 and PTPRD as novel determinants of plasma homocysteine in a family-based genome-wide association study. Blood, 2009, 114, 1417-1422.	0.6	30
28	A Genome Search for Genetic Determinants That Influence Plasma Fibrinogen Levels. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 1287-1292.	1.1	28
29	Sequence variation and genetic evolution at the human F12 locus: mapping quantitative trait nucleotides that influence FXII plasma levels. Human Molecular Genetics, 2010, 19, 517-525.	1.4	28
30	The F7 Gene and Clotting Factor VII Levels: Dissection of a Human Quantitative Trait Locus. Human Biology, 2005, 77, 561-575.	0.4	27
31	Heritability of Hemostasis Phenotypes and Their Correlation with Type 2 Diabetes Status in Mexican Americans. Human Biology, 2005, 77, 1-15.	0.4	25
32	Genome-wide linkage analysis of von Willebrand factor plasma levels: results from the GAIT project. Thrombosis and Haemostasis, 2003, 89, 468-74.	1.8	25
33	Functional analysis of the genetic variability in the F7 gene promoter. Atherosclerosis, 2007, 195, 262-268.	0.4	24
34	Genome-wide linkage analysis for identifying quantitative trait loci involved in the regulation of lipoprotein a (Lpa) levels. European Journal of Human Genetics, 2008, 16, 1372-1379.	1.4	24
35	solarius: an R interface to SOLAR for variance component analysis in pedigrees. Bioinformatics, 2016, 32, 1901-1902.	1.8	24
36	Genetic Determinants of Thrombin Generation and Their Relation to Venous Thrombosis: Results from the GAIT-2 Project. PLoS ONE, 2016, 11, e0146922.	1.1	21

#	Article	IF	CITATIONS
37	Identification of a Plasma MicroRNA Profile Associated With Venous Thrombosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 1392-1399.	1.1	21
38	Heritability of Bone Mineral Density in a Multivariate Family-Based Study. Calcified Tissue International, 2014, 94, 590-596.	1.5	20
39	Platelet count and plateletcrit are associated with an increased risk of venous thrombosis in females. Results from the RETROVE study. Thrombosis Research, 2017, 157, 162-164.	0.8	20
40	Short closure time values in PFA–100® are related to venous thrombotic risk. Results from the RETROVE Study. Thrombosis Research, 2018, 169, 57-63.	0.8	19
41	A Genome-Wide Association Study of the Protein C Anticoagulant Pathway. PLoS ONE, 2011, 6, e29168.	1.1	18
42	Genetic determinants of variation in the plasma levels of the C4b-binding protein (C4BP) in Spanish families. Immunogenetics, 2003, 54, 862-866.	1.2	17
43	Sex-Specific Regulation of Mitochondrial DNA Levels: Genome-Wide Linkage Analysis to Identify Quantitative Trait Loci. PLoS ONE, 2012, 7, e42711.	1.1	17
44	A genome-wide association study in the genetic analysis of idiopathic thrombophilia project suggests sex-specific regulation of mitochondrial DNA levels. Mitochondrion, 2014, 18, 34-40.	1.6	17
45	Age and gender effects on 15 platelet phenotypes in a Spanish population. Computers in Biology and Medicine, 2016, 69, 226-233.	3.9	16
46	Salivary immunity and lower respiratory tract infections in non-elite marathon runners. PLoS ONE, 2018, 13, e0206059.	1.1	16
47	Genetic determinants of Platelet Large-Cell Ratio, Immature Platelet Fraction, and other platelet-related phenotypes. Thrombosis Research, 2015, 136, 361-366.	0.8	15
48	The Unravelling of the Genetic Architecture of Plasminogen Deficiency and its Relation to Thrombotic Disease. Scientific Reports, 2016, 6, 39255.	1.6	15
49	Human F7 sequence is split into three deep clades that are related to FVII plasma levels. Human Genetics, 2006, 118, 741-751.	1.8	12
50	The F7 Gene and Clotting Factor VII Levels: Dissection of a Human Quantitative Trait Locus. Human Biology, 2009, 81, 853-867.	0.4	12
51	Influence of ABO Locus on PFA-100 Collagen-ADP Closure Time Is Not Totally Dependent on the Von Willebrand Factor. Results of a GWAS on GAIT-2 Project Phenotypes. International Journal of Molecular Sciences, 2019, 20, 3221.	1.8	12
52	New approaches and future prospects for evaluating genetic risk of thrombosis. Haematologica, 2005, 90, 1212-22.	1.7	11
53	Combined cis-regulator elements as important mechanism affecting FXII plasma levels. Thrombosis Research, 2010, 125, e55-e60.	0.8	10
54	Severe Type I Protein C Deficiency in a Compound Heterozygote for Y124C and Q132X Mutations in Exon 6 of the PROC Gene. Thrombosis and Haemostasis, 1995, 74, 1215-1220.	1.8	10

#	Article	IF	CITATIONS
55	A genome-wide exploration suggests an oligogenic model of inheritance for the TAFI activity and its antigen levels. Human Genetics, 2008, 124, 81-88.	1.8	9
56	Linkage and association analyses using families identified a locus affecting an osteoporosis-related trait. Bone, 2014, 60, 98-103.	1.4	9
57	Identification of Antithrombin-Modulating Genes. Role of LARGE, a Gene Encoding a Bifunctional Glycosyltransferase, in the Secretion of Proteins?. PLoS ONE, 2013, 8, e64998.	1.1	9
58	The Central Role of KNG1 Gene as a Genetic Determinant of Coagulation Pathway-Related Traits: Exploring Metaphenotypes. PLoS ONE, 2016, 11, e0167187.	1.1	8
59	Identification of a large deletion and three novel mutations in exonÂ13 of the factor V gene in a Spanish family with normal factor V coagulant and anticoagulant properties. Human Genetics, 2002, 111, 59-65.	1.8	7
60	Rapid Detection of the 46C → T Polymorphism in the Factor XII Gene, a Novel Genetic Risk Factor for Thrombosis, by Melting Peak Analysis Using Fluorescence Hybridization Probes. Genetic Testing and Molecular Biomarkers, 2003, 7, 295-301.	1.7	7
61	Genomewide linkage analysis of soluble transferrin receptor plasma levels. Annals of Hematology, 2006, 85, 25-28.	0.8	7
62	Molecular analysis of multiple genetic variants in Spanish FXII-deficient families. Haematologica, 2007, 92, 1569-1572.	1.7	7
63	A genomewide study of body mass index and its genetic correlation with thromboembolic risk. Thrombosis and Haemostasis, 2014, 112, 1036-1043.	1.8	7
64	Ectopic Transcript Analysis Indicates that Allelic Exclusion is an Important Cause of Type I Protein C Deficiency in Patients with Nonsense and Frameshift Mutations in the PROC Gene. Thrombosis and Haemostasis, 1996, 75, 870-876.	1.8	7
65	Affected pathways and transcriptional regulators in gene expression response to an ultra-marathon trail: Global and independent activity approaches. PLoS ONE, 2017, 12, e0180322.	1.1	7
66	Incorporating genetic and clinical data into the prediction of thromboembolism risk in patients with lymphoma. Cancer Medicine, 2021, 10, 7585-7592.	1.3	7
67	Complexity of the genetic contribution to factor VII deficiency in two Spanish families: clinical and biological implications. Haematologica, 2003, 88, 906-13.	1.7	7
68	Double heterozygosity for Factor V Leiden and Factor V Cambridge mutations associated with low levels of activated protein C resistance in a Spanish thrombophilic family. Thrombosis and Haemostasis, 2005, 93, 1193-1195.	1.8	6
69	Multiplex assay for genetic testing of thrombophilia: a method for routine clinical care. Journal of Clinical Laboratory Analysis, 2007, 21, 349-355.	0.9	6
70	African-Americans Express Multiple Haplotypic Forms of the Wildtype Factor VIII (FVIII) Protein: A Possible Role for Pharmacogenetics in FVIII Inhibitor Development? Blood, 2004, 104, 384-384.	0.6	6
71	Integrated GWAS and Gene Expression Suggest ORM1 as a Potential Regulator of Plasma Levels of Cell-Free DNA and Thrombosis Risk. Thrombosis and Haemostasis, 2022, 122, 1027-1039.	1.8	6
72	Protein C deficiency: Identification of a novel two-base pair insertion and two point mutations in exon 7 of the protein C gene in Spanish families. Human Mutation, 1992, 1, 428-431.	1.1	5

#	Article	IF	CITATIONS
73	Next generation sequencing to dissect the genetic architecture of KNG1 and F11 loci using factor XI levels as an intermediate phenotype of thrombosis. PLoS ONE, 2017, 12, e0176301.	1.1	5
74	Recurrent Miscarriage and Implantation Failure of Unknown Cause Studied by a Panel of Thrombophilia Conditions: Increased Frequency of FXIII Val34Leu Polymorphism. Journal of Reproduction and Infertility, 2019, 20, 76-82.	1.0	5
75	DNA Binding Site Characterization by Means of RÉnyi Entropy Measures on Nucleotide Transitions. IEEE Transactions on Nanobioscience, 2008, 7, 133-141.	2.2	4
76	Predicting individual risk of venous thrombosis. Blood, 2012, 120, 500-501.	0.6	4
77	The Relationship between Leukocyte Counts and Venous Thromboembolism: Results from RETROVE Study. Biology and Medicine (Aligarh), 2017, 09, .	0.3	4
78	Predictive Ability of a Clinical-Genetic Risk Score for Venous Thromboembolism in Northern and Southern European Populations. TH Open, 2021, 05, e303-e311.	0.7	4
79	Recurrence of thePROC gene mutation R178Q: Independent origins in Spanish protein C deficiency patients. , 1996, 8, 71-73.		3
80	Genetic Contribution of Femoral Neck Bone Geometry to the Risk of Developing Osteoporosis: A Family-Based Study. PLoS ONE, 2016, 11, e0154833.	1.1	3
81	The TAGA Study: A Study of Factors Determining Aortic Diameter in Families at High Risk of Abdominal Aortic Aneurysm Reveal Two New Candidate Genes. Journal of Clinical Medicine, 2020, 9, 1242.	1.0	3
82	Clustering of individuals given SNPs similarity based on normalized mutual information: F7 SNPs in the GAIT sample. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, 2007, 123-6.	0.5	2
83	Erytrocyte-related phenotypes and genetic susceptibility to thrombosis. Blood Cells, Molecules, and Diseases, 2016, 59, 44-48.	0.6	2
84	Confirmation of a New Statistical Method for Comprehensively Dissecting QTLs Using In Vitro Transcription, the Model Factor VII Gene and a Novel Modification of the G-Free Cassette Blood, 2004, 104, 4002-4002.	0.6	2
85	Thromboplastin-thrombomodulin-mediated time and serum folate levels are genetically correlated with the risk of thromboembolic disease: results from the GAIT project. Thrombosis and Haemostasis, 2002, 87, 68-73.	1.8	2
86	TMAO and Gut Microbial-Derived Metabolites TML and γBB Are Not Associated with Thrombotic Risk in Patients with Venous Thromboembolism. Journal of Clinical Medicine, 2022, 11, 1425.	1.0	2
87	Two novel mutations in exon 5 of the protein C gene in two Spanish families with thrombophilia due to protein C deficiency. Human Molecular Genetics, 1994, 3, 1205-1206.	1.4	1
88	A novel polymorphism (6376 G/T) in intron 7 of the human protein C gene. Human Genetics, 1995, 96, 243-244.	1.8	1
89	Exploring correlation between bone metabolism markers and densitometric traits in extended families from Spain. Bone, 2016, 90, 1-6.	1.4	1
90	Expression of microRNAs in human platelet-poor plasma: analysis of the factors affecting their expression and association with proximal genetic variants. Epigenetics, 2020, 15, 1396-1406.	1.3	1

#	Article	IF	CITATIONS
91	Prevalence and predisposition to deep vein thrombosis in professional male soccer players. Apunts Sports Medicine, 2021, 56, 100364.	0.3	1
92	A validated clinical-genetic score for assessing the risk of thrombosis in patients with COVID-19 receiving thromboprophylaxis. Haematologica, 2022, , .	1.7	1
93	Plasma homocysteine and the genetics of cardiovascular disease. Future Cardiology, 2006, 2, 169-178.	0.5	0
94	Update to Soria et al.'s "F7 Gene and Clotting Factor VII Levels―(2005): Genetic Determinants of Quantitative Traits in Thrombotic Disease. Human Biology, 2009, 81, 869-874.	0.4	0
95	DNA Binding Sites Characterization by Means of Rényi Entropy Measures on Nucleotide Transitions. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2006, , .	0.5	0