John Considine

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/537561/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Strong and Optically Transparent Films Prepared Using Cellulosic Solid Residue Recovered from Cellulose Nanocrystals Production Waste Stream. ACS Applied Materials & Interfaces, 2013, 5, 2527-2534.	8.0	88
2	Influence of drying restraint on physical and mechanical properties of nanofibrillated cellulose films. Cellulose, 2014, 21, 347-356.	4.9	49
3	General Anisotropy Identification of Paperboard with Virtual Fields Method. Experimental Mechanics, 2014, 54, 1395-1410.	2.0	17
4	Printing and mechanical characterization of cellulose nanofibril materials. Cellulose, 2019, 26, 2639-2651.	4.9	17
5	Determining the Elastic Modulus of Compliant Thin Films Supported on Substrates from Flat Punch Indentation Measurements. Experimental Mechanics, 2013, 53, 931-941.	2.0	9
6	Smoothly varying inâ€plane stiffness heterogeneity evaluated under uniaxial tensile stress. Strain, 2017, 53, e12237.	2.4	9
7	Effect of Inorganic Fillers in Paper on the Adhesion of Pressure-Sensitive Adhesives. Journal of Adhesion Science and Technology, 2011, 25, 581-596.	2.6	6
8	Evaluation of strength-controlling defects in paper by stress concentration analyses. Journal of Composite Materials, 2012, 46, 1323-1334.	2.4	5
9	Z-direction fiber orientation in paperboard. Tappi Journal, 2010, 9, 25-32.	0.5	4
10	Toughening Poly(methyl methacrylate) via Reinforcement with Cellulose Nanofibrils. ACS Applied Polymer Materials, 2021, 3, 6102-6110.	4.4	4
11	Mechanical Characterization of Cellulose Nanofibril Materials Made by Additive Manufacturing. Conference Proceedings of the Society for Experimental Mechanics, 2019, , 43-45.	0.5	3
12	Stiffness Heterogeneity of Multiply Paperboard Examined with VFM. Conference Proceedings of the Society for Experimental Mechanics, 2017, , 151-159.	0.5	3
13	A METHOD FOR MECHANICAL PROPERTY TESTING OF PAPERBOARD DURING COMPRESSIVE CREEP IN A CYCLIC HUMIDITY ENVIRONMENT. Experimental Techniques, 1987, 11, 18-21.	1.5	2
14	Optimized Test Design for Identification of the Variation of Elastic Stiffness Properties of Loblolly Pine (Pinus taeda) Pith to Bark. Conference Proceedings of the Society for Experimental Mechanics, 2016, , 67-76.	0.5	2
15	Determination of Constitutive Properties in Inverse Problem Using Airy Stress Function. Conference Proceedings of the Society for Experimental Mechanics, 2018, , 73-81.	0.5	2
16	Determination of Constitutive Parameters in Inverse Problem Using Thermoelastic Data. Conference Proceedings of the Society for Experimental Mechanics, 2019, , 25-34.	0.5	2
17	Humidity dependence of fracture toughness of cellulose fibrous networks. Engineering Fracture Mechanics, 2022, 264, 108330.	4.3	2
18	Inverse identification of elastic constants using Airy stress function: theory and application. Meccanica, 2021, 56, 2381.	2.0	1

JOHN CONSIDINE

#	Article	IF	CITATIONS
19	Improved Instrumented Indentation of Soft Materials through Surface Deformation Measurements. Conference Proceedings of the Society for Experimental Mechanics, 2013, , 141-147.	0.5	1
20	Use of VFM for Heterogeneity Evaluation of Materials Under Uniaxial Tensile Stress. Conference Proceedings of the Society for Experimental Mechanics, 2016, , 61-66.	0.5	1
21	Indentation Measurements on Soft Materials Using Optical Surface Deformation Measurements. Conference Proceedings of the Society for Experimental Mechanics, 2014, , 41-51.	0.5	0
22	Sensitivity Analysis of Hybrid Thermoelastic Techniques. Conference Proceedings of the Society for Experimental Mechanics, 2017, , 29-36.	0.5	0