List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5375554/publications.pdf Version: 2024-02-01

Μιναμλο Υιν

#	Article	IF	CITATIONS
1	SSKM_Succ: A Novel Succinylation Sites Prediction Method Incorporating K-Means Clustering With a New Semi-Supervised Learning Algorithm. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2022, 19, 643-652.	1.9	11
2	A Collaborative Filtering Algorithm with Intragroup Divergence for POI Group Recommendation. Applied Sciences (Switzerland), 2021, 11, 5416.	1.3	8
3	A tensor decomposition based collaborative filtering algorithm for time-aware POI recommendation in LBSN. Multimedia Tools and Applications, 2021, 80, 36215-36235.	2.6	4
4	SCCWalk: An efficient local search algorithm and its improvements for maximum weight clique problem. Artificial Intelligence, 2020, 280, 103230.	3.9	33
5	A two phase removing algorithm for minimum independent dominating set problem. Applied Soft Computing Journal, 2020, 88, 105949.	4.1	8
6	Solving the Set Packing Problem via a Maximum Weighted Independent Set Heuristic. Mathematical Problems in Engineering, 2020, 2020, 1-11.	0.6	3
7	A novel fuzzy model for multi-objective permutation flow shop scheduling problem with fuzzy processing time. Advances in Mechanical Engineering, 2019, 11, 168781401984369.	0.8	10
8	Identifying N6-methyladenosine sites using extreme gradient boosting system optimized by particle swarm optimizer. Journal of Theoretical Biology, 2019, 467, 39-47.	0.8	21
9	An Improved Memetic Algorithm for the Partial Vertex Cover Problem. IEEE Access, 2019, 7, 17389-17402.	2.6	8
10	An Efficient Local Search for the Maximum Edge Weighted Clique Problem. IEEE Access, 2018, 6, 10743-10753.	2.6	12
11	A hybrid metaheuristic algorithm for generalized vertex cover problem. Memetic Computing, 2018, 10, 165-176.	2.7	9
12	A restart local search algorithm for solving maximum set k-covering problem. Neural Computing and Applications, 2018, 29, 755-765.	3.2	12
13	A memetic algorithm for minimum independent dominating set problem. Neural Computing and Applications, 2018, 30, 2519-2529.	3.2	8
14	A novel local search algorithm for the minimum capacitated dominating set. Journal of the Operational Research Society, 2018, 69, 849-863.	2.1	6
15	An Efficient Heuristic Algorithm for Solving Connected Vertex Cover Problem. Mathematical Problems in Engineering, 2018, 2018, 1-10.	0.6	3
16	A local search algorithm with tabu strategy and perturbation mechanism for generalized vertex cover problem. Neural Computing and Applications, 2017, 28, 1775-1785.	3.2	27
17	A path cost-based GRASP for minimum independent dominating set problem. Neural Computing and Applications, 2017, 28, 143-151.	3.2	21
18	A novel local search for unicost set covering problem using hyperedge configuration checking and weight diversity. Science China Information Sciences, 2017, 60, 1.	2.7	39

#	Article	IF	CITATIONS
19	GRASP for connected dominating set problems. Neural Computing and Applications, 2017, 28, 1059-1067.	3.2	21
20	Two approximate algorithms for model counting. Theoretical Computer Science, 2017, 657, 28-37.	0.5	2
21	Glypre: In Silico Prediction of Protein Glycation Sites by Fusing Multiple Features and Support Vector Machine. Molecules, 2017, 22, 1891.	1.7	18
22	Phase Transition for Maximum Not-All-Equal Satisfiability. Lecture Notes in Computer Science, 2017, , 267-279.	1.0	0
23	Modified differential evolution with self-adaptive parameters method. Journal of Combinatorial Optimization, 2016, 31, 546-576.	0.8	39
24	An efficient local search framework for the minimum weighted vertex cover problem. Information Sciences, 2016, 372, 428-445.	4.0	35
25	A particle swarm inspired cuckoo search algorithm for real parameter optimization. Soft Computing, 2016, 20, 1389-1413.	2.1	54
26	Experimental analyses on phase transitions in compiling satisfiability problems. Science China Information Sciences, 2015, 58, 1-11.	2.7	9
27	Prediction of "Aggregation-Prone―Peptides with Hybrid Classification Approach. Mathematical Problems in Engineering, 2015, 2015, 1-9.	0.6	1
28	PGluS: prediction of protein S-glutathionylation sites with multiple features and analysis. Molecular BioSystems, 2015, 11, 923-929.	2.9	20
29	Modified cuckoo search algorithm with self adaptive parameter method. Information Sciences, 2015, 298, 80-97.	4.0	175
30	Approximate Model Counting via Extension Rule. Lecture Notes in Computer Science, 2015, , 229-240.	1.0	0
31	Self-adaptive constrained artificial bee colony for constrained numerical optimization. Neural Computing and Applications, 2014, 24, 723-734.	3.2	70
32	An upper (lower) bound for Max (Min) CSP. Science China Information Sciences, 2014, 57, 1-9.	2.7	3
33	Parameter estimation for chaotic systems by hybrid differential evolution algorithm and artificial bee colony algorithm. Nonlinear Dynamics, 2014, 77, 61-71.	2.7	86
34	An effective differential evolution algorithm for permutation flow shop scheduling problem. Applied Mathematics and Computation, 2014, 248, 143-159.	1.4	43
35	Animal migration optimization: an optimization algorithm inspired by animal migration behavior. Neural Computing and Applications, 2014, 24, 1867-1877.	3.2	237
36	Enhancing the performance of cuckoo search algorithm using orthogonal learning method. Neural Computing and Applications, 2014, 24, 1233-1247.	3.2	121

#	Article	IF	CITATIONS
37	Fuzzy multiset finite automata and their languages. Soft Computing, 2013, 17, 381-390.	2.1	21
38	A hybrid cuckoo search via Lévy flights for the permutation flow shop scheduling problem. International Journal of Production Research, 2013, 51, 4732-4754.	4.9	84
39	Differential Evolution for Prediction of Longitudinal Dispersion Coefficients in Natural Streams. Water Resources Management, 2013, 27, 5245.	1.9	30
40	An opposition-based differential evolution algorithm for permutation flow shop scheduling based on diversity measure. Advances in Engineering Software, 2013, 55, 10-31.	1.8	133
41	Multiobjective Binary Biogeography Based Optimization for Feature Selection Using Gene Expression Data. IEEE Transactions on Nanobioscience, 2013, 12, 343-353.	2.2	119
42	Linear Antenna Array Synthesis Using Orthogonal Artificial Bee Colony Algorithm. Journal of Computational and Theoretical Nanoscience, 2013, 10, 2568-2575.	0.4	2
43	Hybrid Artificial Bee Colony and Biogeography Based Optimization for Clobal Numerical Optimization. Journal of Computational and Theoretical Nanoscience, 2013, 10, 1156-1163.	0.4	5
44	Position-Specific Analysis and Prediction of Protein Pupylation Sites Based on Multiple Features. BioMed Research International, 2013, 2013, 1-9.	0.9	28
45	Phase Transitions of Contingent Planning Problem. Mathematical Problems in Engineering, 2013, 2013, 1-9.	0.6	0
46	Identification of Protein Pupylation Sites Using Bi-Profile Bayes Feature Extraction and Ensemble Learning. Mathematical Problems in Engineering, 2013, 2013, 1-7.	0.6	9
47	Parameter Estimation for Chaotic Systems by Improved Artificial Bee Colony Algorithm. Journal of Computational and Theoretical Nanoscience, 2013, 10, 756-762.	0.4	2
48	Prediction of Methylation Sites Using the Composition of K-Spaced Amino Acid Pairs. Protein and Peptide Letters, 2013, 20, 911-917.	0.4	27
49	Prediction of Bioluminescent Proteins Using Auto Covariance Transformation of Evolutional Profiles. International Journal of Molecular Sciences, 2012, 13, 3650-3660.	1.8	16
50	Using Support Vector Machine and Evolutionary Profiles to Predict Antifreeze Protein Sequences. International Journal of Molecular Sciences, 2012, 13, 2196-2207.	1.8	37
51	PHASE TRANSITIONS OF EXPSPACE-COMPLETE PROBLEMS: A FURTHER STEP. International Journal of Foundations of Computer Science, 2012, 23, 173-184.	0.8	10
52	Self Adaptive Artificial Bee Colony for Global Numerical Optimization. IERI Procedia, 2012, 1, 59-65.	0.3	9
53	Notes on: "Interval-valued intuitionistic fuzzy soft sets and their properties―[Comput. Math. Appl. 60 (2010) 906–918]. Computers and Mathematics With Applications, 2012, 64, 2954-2960.	1.4	4
54	Multi-operator based biogeography based optimization with mutation for global numerical optimization. Computers and Mathematics With Applications, 2012, 64, 2833-2844.	1.4	50

#	Article	IF	CITATIONS
55	On the utility of landmarks in SAT based planning. Knowledge-Based Systems, 2012, 36, 146-154.	4.0	6
56	Prediction of Protein Phosphorylation Sites by Using the Composition of k-Spaced Amino Acid Pairs. PLoS ONE, 2012, 7, e46302.	1.1	60
57	IMPROVED ARTIFICIAL BEE COLONY FOR DESIGN OF A RECONFIGURABLE ANTENNA ARRAY WITH DISCRETE PHASE SHIFTERS. Progress in Electromagnetics Research C, 2012, 25, 193-208.	0.6	10
58	Design of multiobjective reconfigurable antenna array with discrete phase shifters using multiobjective differential evolution based on decomposition. International Journal of RF and Microwave Computer-Aided Engineering, 2012, 22, 675-681.	0.8	7
59	Application of Differential Evolution Algorithm on Self-Potential Data. PLoS ONE, 2012, 7, e51199.	1.1	49
60	DESIGN OF A RECONFIGURABLE ANTENNA ARRAY WITH DISCRETE PHASE SHIFTERS USING DIFFERENTIAL EVOLUTION ALGORITHM. Progress in Electromagnetics Research B, 2011, 31, 29-43.	0.7	27
61	Hybrid Differential Evolution with Biogeography-Based Optimization for Design of a Reconfigurable Antenna Array with Discrete Phase Shifters. International Journal of Antennas and Propagation, 2011, 2011, 1-12.	0.7	29
62	A perturb biogeography based optimization with mutation for global numerical optimization. Applied Mathematics and Computation, 2011, 218, 598-609.	1.4	91
63	Soft polygroups. Computers and Mathematics With Applications, 2011, 62, 3529-3537.	1.4	7
64	A novel objective function for job-shop scheduling problem with fuzzy processing time and fuzzy due date using differential evolution algorithm. International Journal of Advanced Manufacturing Technology, 2011, 56, 1125-1138.	1.5	49
65	A novel hybrid K-harmonic means and gravitational search algorithm approach for clustering. Expert Systems With Applications, 2011, 38, 9319-9324.	4.4	105
66	Multi-cue-based CamShift guided particle filter tracking. Expert Systems With Applications, 2011, 38, 6313-6318.	4.4	38
67	Prediction of Lysine Ubiquitylation with Ensemble Classifier and Feature Selection. International Journal of Molecular Sciences, 2011, 12, 8347-8361.	1.8	46
68	Product structure of the fuzzy n-ary factor polygroup. Computers and Mathematics With Applications, 2010, 59, 2734-2742.	1.4	1
69	An effective GSA based memetic algorithm for permutation flow shop scheduling. , 2010, , .		6
70	PHASE TRANSITIONS OF EXPSPACE-COMPLETE PROBLEMS. International Journal of Foundations of Computer Science, 2010, 21, 1073-1088.	0.8	9
71	Reverse Bridge Theorem under Constraint Partition. Mathematical Problems in Engineering, 2010, 2010, 1-18.	0.6	3
72	Flexible planning using fuzzy description logics: Theory and application. Applied Soft Computing Journal, 2009, 9, 142-148.	4.1	5

#	Article	IF	CITATIONS
73	MCN and MO: Two Heuristic Strategies in Knowledge Compilation Using Extension Rule. , 2009, , .		1
74	Translating PDDL Tasks into Multi-valued Conformant Planning Tasks. , 2007, , .		2
75	Recent advances in conformant planning. , 2007, , .		0
76	Improving the Convergence of RTDP. , 2007, , .		0
77	Recognizing the agent's goals incrementally: planning graph as a basis. Frontiers of Computer Science, 2007, 1, 26-36.	0.6	4
78	Local Search for Minimum Weight Dominating Set with Two-Level Configuration Checking and Frequency Based Scoring Function. Journal of Artificial Intelligence Research, 0, 58, 267-295.	7.0	32