
Yuhui Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5375540/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Vascular normalizing doses of antiangiogenic treatment reprogram the immunosuppressive tumor microenvironment and enhance immunotherapy. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 17561-17566.	3.3	800
2	Vascular Normalization as an Emerging Strategy to Enhance Cancer Immunotherapy. Cancer Research, 2013, 73, 2943-2948.	0.4	535
3	Adenosine receptors in regulation of dendritic cell differentiation and function. Blood, 2008, 112, 1822-1831.	0.6	357
4	CXCR4 inhibition in tumor microenvironment facilitates antiâ€programmed death receptorâ€1 immunotherapy in sorafenibâ€ŧreated hepatocellular carcinoma in mice. Hepatology, 2015, 61, 1591-1602.	3.6	355
5	Improving immune–vascular crosstalk for cancer immunotherapy. Nature Reviews Immunology, 2018, 18, 195-203.	10.6	340
6	Obesity-Induced Inflammation and Desmoplasia Promote Pancreatic Cancer Progression and Resistance to Chemotherapy. Cancer Discovery, 2016, 6, 852-869.	7.7	318
7	Recruitment of Myeloid but not Endothelial Precursor Cells Facilitates Tumor Regrowth after Local Irradiation. Cancer Research, 2010, 70, 5679-5685.	0.4	253
8	Dual inhibition of Ang-2 and VEGF receptors normalizes tumor vasculature and prolongs survival in glioblastoma by altering macrophages. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4470-4475.	3.3	251
9	Impaired lymphatic contraction associated with immunosuppression. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18784-18789.	3.3	246
10	Targeting Placental Growth Factor/Neuropilin 1 Pathway Inhibits Growth and Spread of Medulloblastoma. Cell, 2013, 152, 1065-1076.	13.5	209
11	Increase in tumor-associated macrophages after antiangiogenic therapy is associated with poor survival among patients with recurrent glioblastoma. Neuro-Oncology, 2013, 15, 1079-1087.	0.6	205
12	Distinct roles of VEGFR-1 and VEGFR-2 in the aberrant hematopoiesis associated with elevated levels of VEGF. Blood, 2007, 110, 624-631.	0.6	198
13	Anti-VEGF therapy induces ECM remodeling and mechanical barriers to therapy in colorectal cancer liver metastases. Science Translational Medicine, 2016, 8, 360ra135.	5.8	184
14	Differential effects of sorafenib on liver versus tumor fibrosis mediated by stromal-derived factor 1 alpha/C-X-C receptor type 4 axis and myeloid differentiation antigen-positive myeloid cell infiltration in mice. Hepatology, 2014, 59, 1435-1447.	3.6	178
15	Obesity promotes resistance to anti-VEGF therapy in breast cancer by up-regulating IL-6 and potentially FGF-2. Science Translational Medicine, 2018, 10, .	5.8	153
16	Increased vessel perfusion predicts the efficacy of immune checkpoint blockade. Journal of Clinical Investigation, 2018, 128, 2104-2115.	3.9	152
17	Remodeling Tumor Vasculature to Enhance Delivery of Intermediate-Sized Nanoparticles. ACS Nano, 2015, 9, 8689-8696.	7.3	134
18	Combined targeting of HER2 and VEGFR2 for effective treatment of <i>HER2</i> -amplified breast cancer brain metastases. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E3119-27.	3.3	131

Υυμυι Ηυάνς

#	Article	IF	CITATIONS
19	Quantum dot/antibody conjugates for in vivo cytometric imaging in mice. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1350-1355.	3.3	109
20	Suppression of Hepatic Inflammation <i>via</i> Systemic siRNA Delivery by Membrane-Disruptive and Endosomolytic Helical Polypeptide Hybrid Nanoparticles. ACS Nano, 2016, 10, 1859-1870.	7.3	107
21	Blockade of MMP14 Activity in Murine Breast Carcinomas: Implications for Macrophages, Vessels, and Radiotherapy. Journal of the National Cancer Institute, 2015, 107, .	3.0	106
22	Effects of Vascular-Endothelial Protein Tyrosine Phosphatase Inhibition on Breast Cancer Vasculature and Metastatic Progression. Journal of the National Cancer Institute, 2013, 105, 1188-1201.	3.0	101
23	Host and Direct Antitumor Effects and Profound Reduction in Tumor Metastasis with Selective EP4 Receptor Antagonism. Cancer Research, 2006, 66, 9665-9672.	0.4	99
24	Targeting CXCR4-dependent immunosuppressive Ly6C ^{low} monocytes improves antiangiogenic therapy in colorectal cancer. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10455-10460.	3.3	97
25	The Reciprocity between Radiotherapy and Cancer Immunotherapy. Clinical Cancer Research, 2019, 25, 1709-1717.	3.2	95
26	Polarization of Tumor-Associated Macrophages: A Novel Strategy for Vascular Normalization and Antitumor Immunity. Cancer Cell, 2011, 19, 1-2.	7.7	91
27	Benefits of Vascular Normalization Are Dose and Time Dependent—Letter. Cancer Research, 2013, 73, 7144-7146.	0.4	89
28	C-X-C receptor type 4 promotes metastasis by activating p38 mitogen-activated protein kinase in myeloid differentiation antigen (Gr-1)-positive cells. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 302-307.	3.3	85
29	Tumor Vasculatures: A New Target for Cancer Immunotherapy. Trends in Pharmacological Sciences, 2019, 40, 613-623.	4.0	79
30	PDGF-D Improves Drug Delivery and Efficacy via Vascular Normalization, But Promotes Lymphatic Metastasis by Activating CXCR4 in Breast Cancer. Clinical Cancer Research, 2011, 17, 3638-3648.	3.2	67
31	Humanized CD7 nanobody-based immunotoxins exhibit promising anti-T-cell acute lymphoblastic leukemia potential. International Journal of Nanomedicine, 2017, Volume 12, 1969-1983.	3.3	65
32	Resuscitating Cancer Immunosurveillance: Selective Stimulation of DLL1-Notch Signaling in T cells Rescues T-cell Function and Inhibits Tumor Growth. Cancer Research, 2011, 71, 6122-6131.	0.4	64
33	NCRâ^' group 3 innate lymphoid cells orchestrate IL-23/IL-17 axis to promote hepatocellular carcinoma development. EBioMedicine, 2019, 41, 333-344.	2.7	56
34	CTLA4 blockade promotes vessel normalization in breast tumors <i>via</i> the accumulation of eosinophils. International Journal of Cancer, 2020, 146, 1730-1740.	2.3	51
35	Lentinan inhibits tumor angiogenesis via interferon Î ³ and in a T cell independent manner. Journal of Experimental and Clinical Cancer Research, 2018, 37, 260.	3.5	40
36	Myeloid-derived suppressor cell and macrophage exert distinct angiogenic and immunosuppressive effects in breast cancer. Oncotarget, 2017, 8, 54173-54186.	0.8	34

Yuhui Huang

#	Article	IF	CITATIONS
37	DLL1 orchestrates CD8 ⁺ T cells to induce long-term vascular normalization and tumor regression. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	32
38	Combinational Therapy of Interferon-α and Chemotherapy Normalizes Tumor Vasculature by Regulating Pericytes Including the Novel Marker RGS5 in Melanoma. Journal of Immunotherapy, 2011, 34, 320-326.	1.2	22
39	Anti-Vascular Endothelial Growth Factor Treatment in Combination with Chemotherapy Delays Hematopoietic Recovery Due to Decreased Proliferation of Bone Marrow Hematopoietic Progenitor Cells. Journal of Thoracic Oncology, 2010, 5, 1410-1415.	0.5	17
40	Mechanisms of and strategies for overcoming resistance to anti-vascular endothelial growth factor therapy in non-small cell lung cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 2015, 1855, 193-201.	3.3	11
41	High stearic acid diet modulates gut microbiota and aggravates acute graft-versus-host disease. Signal Transduction and Targeted Therapy, 2021, 6, 277.	7.1	11
42	Expression And Secretion Of Functional Recombinant 1 Scu-Pa:Av In Insect Cell Using Signal Peptides. Protein and Peptide Letters, 2004, 11, 49-55.	0.4	8