Demetris Koutsoyiannis

List of Publications by Citations

Source: https://exaly.com/author-pdf/5375458/demetris-koutsoyiannis-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

242 8,598 50 84 g-index

323 9,827 4 7.04 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
242	Panta RheiEverything FlowsIIChange in hydrology and societyIIhe IAHS Scientific Decade 2013II022. <i>Hydrological Sciences Journal</i> , 2013 , 58, 1256-1275	3.5	452
241	A mathematical framework for studying rainfall intensity-duration-frequency relationships. <i>Journal of Hydrology</i> , 1998 , 206, 118-135	6	292
240	Climate change, the Hurst phenomenon, and hydrological statistics. <i>Hydrological Sciences Journal</i> , 2003 , 48, 3-24	3.5	271
239	One decade of multi-objective calibration approaches in hydrological modelling: a review. <i>Hydrological Sciences Journal</i> , 2010 , 55, 58-78	3.5	269
238	Flood fatalities in Africa: From diagnosis to mitigation. <i>Geophysical Research Letters</i> , 2010 , 37, n/a-n/a	4.9	225
237	Statistical analysis of hydroclimatic time series: Uncertainty and insights. <i>Water Resources Research</i> , 2007 , 43,	5.4	210
236	Battle of extreme value distributions: A global survey on extreme daily rainfall. <i>Water Resources Research</i> , 2013 , 49, 187-201	5.4	206
235	The Hurst phenomenon and fractional Gaussian noise made easy. <i>Hydrological Sciences Journal</i> , 2002 , 47, 573-595	3.5	190
234	Modeling and mitigating natural hazards: Stationarity is immortal!. <i>Water Resources Research</i> , 2014 , 50, 9748-9756	5.4	161
233	Nonstationarity versus scaling in hydrology. <i>Journal of Hydrology</i> , 2006 , 324, 239-254	6	153
232	Statistics of extremes and estimation of extreme rainfall: I. Theoretical investigation / Statistiques de valeurs extrmes et estimation de prèipitations extrmes: I. Recherche thorique. <i>Hydrological Sciences Journal</i> , 2004 , 49,	3.5	138
231	Statistics of extremes and estimation of extreme rainfall: II. Empirical investigation of long rainfall records / Statistiques de valeurs extrmes et estimation de prcipitations extrmes: II. Recherche empirique sur de longues sries de prcipitations. <i>Hydrological Sciences Journal</i> , 2004 , 49,	3.5	135
230	Dryland hydrology in Mediterranean regions review. <i>Hydrological Sciences Journal</i> , 2007 , 52, 1077-108	73.5	133
229	HESS Opinions "A random walk on water". <i>Hydrology and Earth System Sciences</i> , 2010 , 14, 585-601	5.5	131
228	A blueprint for process-based modeling of uncertain hydrological systems. <i>Water Resources Research</i> , 2012 , 48,	5.4	129
227	Rainfall disaggregation using adjusting procedures on a Poisson cluster model. <i>Journal of Hydrology</i> , 2001 , 246, 109-122	6	129
226	Evaluation of the parameterization-simulation-optimization approach for the control of reservoir systems. <i>Water Resources Research</i> , 2003 , 39,	5.4	125

(2008-2015)

225	Negligent killing of scientific concepts: the stationarity case. <i>Hydrological Sciences Journal</i> , 2015 , 60, 1174-1183	3.5	123	
224	Hurst-Kolmogorov Dynamics and Uncertainty1. <i>Journal of the American Water Resources Association</i> , 2011 , 47, 481-495	2.1	122	
223	Comparative evaluation of 1D and quasi-2D hydraulic models based on benchmark and real-world applications for uncertainty assessment in flood mapping. <i>Journal of Hydrology</i> , 2016 , 534, 478-492	6	121	
222	How extreme is extreme? An assessment of daily rainfall distribution tails. <i>Hydrology and Earth System Sciences</i> , 2013 , 17, 851-862	5.5	118	
221	On the credibility of climate predictions. <i>Hydrological Sciences Journal</i> , 2008 , 53, 671-684	3.5	117	
220	A generalized mathematical framework for stochastic simulation and forecast of hydrologic time series. <i>Water Resources Research</i> , 2000 , 36, 1519-1533	5.4	111	
219	A comparison of local and aggregated climate model outputs with observed data. <i>Hydrological Sciences Journal</i> , 2010 , 55, 1094-1110	3.5	88	
218	Urban wastewater and stormwater technologies in ancient Greece. Water Research, 2005, 39, 210-20	12.5	87	
217	Analysis of a Long Record of Annual Maximum Rainfall in Athens, Greece, and Design Rainfall Inferences 2000 , 22, 29-48		87	
216	Entropy based derivation of probability distributions: A case study to daily rainfall. <i>Advances in Water Resources</i> , 2012 , 45, 51-57	4.7	86	
215	A probabilistic view of hershfield's method for estimating probable maximum precipitation. <i>Water Resources Research</i> , 1999 , 35, 1313-1322	5.4	79	
214	Climatic Variability Over Time Scales Spanning Nine Orders of Magnitude: Connecting Milankovitch Cycles with Hurstkolmogorov Dynamics. <i>Surveys in Geophysics</i> , 2013 , 34, 181-207	7.6	78	
213	Hydrology and change. <i>Hydrological Sciences Journal</i> , 2013 , 58, 1177-1197	3.5	77	
212	A scaling model of a storm hyetograph. Water Resources Research, 1993, 29, 2345-2361	5.4	76	
211	Climate, hydrology and freshwater: towards an interactive incorporation of hydrological experience into climate research. <i>Hydrological Sciences Journal</i> , 2009 , 54, 394-405	3.5	72	
210	A parametric rule for planning and management of multiple-reservoir systems. <i>Water Resources Research</i> , 1997 , 33, 2165-2177	5.4	70	
209	Coupling stochastic models of different timescales. Water Resources Research, 2001, 37, 379-391	5.4	69	
208	Medium-range flow prediction for the Nile: a comparison of stochastic and deterministic methods / Prvision du dbit du Nil limoyen terme: une comparaison de mthodes stochastiques et dterministes. Hydrological Sciences Journal 2008, 53, 142-164	3.5	68	

207	Urban Water Management in Ancient Greece: Legacies and Lessons. <i>Journal of Water Resources Planning and Management - ASCE</i> , 2008 , 134, 45-54	2.8	66	
206	Uncertainty, entropy, scaling and hydrological stochastics. 1. Marginal distributional properties of hydrological processes and state scaling / Incertitude, entropie, effet d'thelle et proprits stochastiques hydrologiques. 1. Proprits distributionnelles marginales des processus	3.5	66	
205	Multivariate rainfall disaggregation at a fine timescale. Water Resources Research, 2003, 39,	5.4	65	
204	Predictability of monthly temperature and precipitation using automatic time series forecasting methods. <i>Acta Geophysica</i> , 2018 , 66, 807-831	2.2	58	
203	A multivariate stochastic model for the generation of synthetic time series at multiple time scales reproducing long-term persistence. <i>Environmental Modelling and Software</i> , 2014 , 62, 139-152	5.2	57	
202	Climacogram versus autocovariance and power spectrum in stochastic modelling for Markovian and Hurst Rolmogorov processes. <i>Stochastic Environmental Research and Risk Assessment</i> , 2015 , 29, 1649-16	6 ઢ ે ^{.5}	56	
201	A stochastic disaggregation method for design storm and flood synthesis. <i>Journal of Hydrology</i> , 1994 , 156, 193-225	6	56	
200	A probabilistic approach to the concept of Probable Maximum Precipitation. <i>Advances in Geosciences</i> ,7, 51-54		56	
199	Simple Disaggregation by Accurate Adjusting Procedures. Water Resources Research, 1996, 32, 2105-21	13 .4	55	
198	Comparison of stochastic and machine learning methods for multi-step ahead forecasting of hydrological processes. <i>Stochastic Environmental Research and Risk Assessment</i> , 2019 , 33, 481-514	3.5	55	
197	HESS Opinions: "Climate, hydrology, energy, water: recognizing uncertainty and seeking sustainability". <i>Hydrology and Earth System Sciences</i> , 2009 , 13, 247-257	5.5	54	
196	Clausius Clapeyron equation and saturation vapour pressure: simple theory reconciled with practice. European Journal of Physics, 2012, 33, 295-305	0.8	53	
195	Generic and parsimonious stochastic modelling for hydrology and beyond. <i>Hydrological Sciences Journal</i> , 2016 , 61, 225-244	3.5	51	
194	One hundred years of return period: Strengths and limitations. Water Resources Research, 2015 , 51, 857	′0 5 8458	5 51	
193	A global survey on the seasonal variation of the marginal distribution of daily precipitation. <i>Advances in Water Resources</i> , 2016 , 94, 131-145	4.7	50	
192	Scale of water resources development and sustainability: small is beautiful, large is great. Hydrological Sciences Journal, 2011 , 56, 553-575	3.5	49	
191	Simultaneous estimation of the parameters of the Hurst Rolmogorov stochastic process. <i>Stochastic Environmental Research and Risk Assessment</i> , 2011 , 25, 21-33	3.5	48	
190	Deterministic chaos versus stochasticity in analysis and modeling of point rainfall series. <i>Journal of Geophysical Research</i> , 1996 , 101, 26441-26451		47	

(2011-2007)

189	Uncertainty Assessment of Future Hydroclimatic Predictions: A Comparison of Probabilistic and Scenario-Based Approaches. <i>Journal of Hydrometeorology</i> , 2007 , 8, 261-281	3.7	46	
188	A parsimonious regional parametric evapotranspiration model based on a simplification of the Penman Monteith formula. <i>Journal of Hydrology</i> , 2015 , 524, 708-717	6	45	
187	A rainfall disaggregation scheme for sub-hourly time scales: Coupling a Bartlett-Lewis based model with adjusting procedures. <i>Journal of Hydrology</i> , 2018 , 556, 980-992	6	45	
186	Uncertainty, entropy, scaling and hydrological stochastics. 2. Time dependence of hydrological processes and time scaling / Incertitude, entropie, effet d'thelle et proprits stochastiques hydrologiques. 2. Dpendance temporelle des processus hydrologiques et thelle temporelle.	3.5	45	
185	Flood design recipes vs. reality: can predictions for ungauged basins be trusted?. <i>Natural Hazards and Earth System Sciences</i> , 2014 , 14, 1417-1428	3.9	44	
184	Estimating the Uncertainty of Hydrological Predictions through Data-Driven Resampling Techniques. <i>Journal of Hydrologic Engineering - ASCE</i> , 2015 , 20,	1.8	43	
183	The scientific legacy of Harold Edwin Hurst (1880🛮 978). <i>Hydrological Sciences Journal</i> , 2016 , 61, 1571-1	59,05	43	
182	A decision support system for the management of the water resource system of Athens. <i>Physics and Chemistry of the Earth</i> , 2003 , 28, 599-609	3	43	
181	A dynamic model for short-scale rainfall disaggregation. <i>Hydrological Sciences Journal</i> , 1990 , 35, 303-32	23.5	42	
180	Just two moments! A cautionary note against use of high-order moments in multifractal models in hydrology. <i>Hydrology and Earth System Sciences</i> , 2014 , 18, 243-255	5.5	41	
179	Revisiting the global hydrological cycle: is it intensifying?. <i>Hydrology and Earth System Sciences</i> , 2020 , 24, 3899-3932	5.5	41	
178	Stochastic synthesis approximating any process dependence and distribution. <i>Stochastic Environmental Research and Risk Assessment</i> , 2018 , 32, 1493-1515	3.5	40	
177	Scale-dependence of persistence in precipitation records. <i>Nature Climate Change</i> , 2016 , 6, 399-401	21.4	40	
176	Calibration of a semi-distributed model for conjunctive simulation of surface and groundwater flows / Calage dun modle semi-distribu'pour la simulation conjointe doulements superficiels et souterrains. <i>Hydrological Sciences Journal</i> , 2004 , 49,	3.5	40	
175	Rainfall downscaling in time: theoretical and empirical comparison between multifractal and Hurst-Kolmogorov discrete random cascades. <i>Hydrological Sciences Journal</i> , 2012 , 57, 1052-1066	3.5	39	
174	A brief history of urban water supply in antiquity. <i>Water Science and Technology: Water Supply</i> , 2007 , 7, 1-12	1.4	37	
173	A DECISION SUPPORT TOOL FOR THE MANAGEMENT OF MULTI-RESERVOIR SYSTEMS1. <i>Journal of the American Water Resources Association</i> , 2002 , 38, 945-958	2.1	37	
172	Holistic versus monomeric strategies for hydrological modelling of human-modified hydrosystems. <i>Hydrology and Earth System Sciences</i> , 2011 , 15, 743-758	5.5	36	

171	Probabilistic Hydrological Post-Processing at Scale: Why and How to Apply Machine-Learning Quantile Regression Algorithms. <i>Water (Switzerland)</i> , 2019 , 11, 2126	3	36
170	HurstKolmogorov dynamics as a result of extremal entropy production. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2011 , 390, 1424-1432	3.3	33
169	HYDROGEIOS: a semi-distributed GIS-based hydrological model for modified river basins. <i>Hydrology</i> and Earth System Sciences, 2008 , 12, 989-1006	5.5	33
168	On the quest for chaotic attractors in hydrological processes. <i>Hydrological Sciences Journal</i> , 2006 , 51, 1065-1091	3.5	33
167	A theoretically consistent stochastic cascade for temporal disaggregation of intermittent rainfall. <i>Water Resources Research</i> , 2017 , 53, 4586-4605	5.4	31
166	Revisiting long-range dependence in annual precipitation. <i>Journal of Hydrology</i> , 2018 , 556, 891-900	6	31
165	Assessment of environmental flows under limited data availability: case study of the Acheloos River, Greece. <i>Hydrological Sciences Journal</i> , 2014 , 59, 731-750	3.5	31
164	Temporal and spatial variability of rainfall over Greece. <i>Theoretical and Applied Climatology</i> , 2017 , 130, 217-232	3	31
163	A nonlinear disaggregation method with a reduced parameter set for simulation of hydrologic series. <i>Water Resources Research</i> , 1992 , 28, 3175-3191	5.4	30
162	A quick gap filling of missing hydrometeorological data. <i>Journal of Geophysical Research D: Atmospheres</i> , 2014 , 119, 9290-9300	4.4	29
161	An entropic-stochastic representation of rainfall intermittency: The origin of clustering and persistence. <i>Water Resources Research</i> , 2006 , 42,	5.4	29
160	On the parametric approach to unit hydrograph identification. <i>Water Resources Management</i> , 1989 , 3, 107-128	3.7	29
159	A Global-Scale Investigation of Stochastic Similarities in Marginal Distribution and Dependence Structure of Key Hydrological-Cycle Processes. <i>Hydrology</i> , 2021 , 8, 59	2.8	29
158	Univariate Time Series Forecasting of Temperature and Precipitation with a Focus on Machine Learning Algorithms: a Multiple-Case Study from Greece. <i>Water Resources Management</i> , 2018 , 32, 5207	- <i>§</i> 2⁄39	29
157	Stochastic analysis and simulation of hydrometeorological processes associated with wind and solar energy. <i>Renewable Energy</i> , 2014 , 63, 624-633	8.1	27
156	Parametric Modelling of Potential Evapotranspiration: A Global Survey. <i>Water (Switzerland)</i> , 2017 , 9, 795	3	27
155	Can a simple stochastic model generate rich patterns of rainfall events?. <i>Journal of Hydrology</i> , 2011 , 411, 279-289	6	27
154	Editorial Quantifying the impact of hydrological studies. <i>Hydrological Sciences Journal</i> , 2007 , 52, 3-17	3.5	27

(2008-2018)

153	One-step ahead forecasting of geophysical processes within a purely statistical framework. <i>Geoscience Letters</i> , 2018 , 5,	3.5	26	
152	On the long-range dependence properties of annual precipitation using a global network of instrumental measurements. <i>Advances in Water Resources</i> , 2018 , 111, 301-318	4.7	26	
151	Discussion of Generalized regression neural networks for evapotranspiration modelling Hydrological Sciences Journal, 2007 , 52, 832-839	3.5	25	•
150	Hydrological modelling of temporally-varying catchments: facets of change and the value of information. <i>Hydrological Sciences Journal</i> , 2015 , 60, 1438-1461	3.5	24	
149	Ecosystem functioning is enveloped by hydrometeorological variability. <i>Nature Ecology and Evolution</i> , 2017 , 1, 1263-1270	12.3	24	
148	A stochastic methodology for generation of seasonal time series reproducing overyear scaling behaviour. <i>Journal of Hydrology</i> , 2006 , 322, 138-154	6	24	
147	A review of land use, visibility and public perception of renewable energy in the context of landscape impact. <i>Applied Energy</i> , 2020 , 276, 115367	10.7	24	
146	Simulation of Stochastic Processes Exhibiting Any-Range Dependence and Arbitrary Marginal Distributions. <i>Water Resources Research</i> , 2018 , 54, 9484-9513	5.4	24	
145	Entropy: From Thermodynamics to Hydrology. <i>Entropy</i> , 2014 , 16, 1287-1314	2.8	23	
144	A groundwater-based, objective-heuristic parameter optimisation method for a precipitation-runoff model and its application to a semi-arid basin. <i>Journal of Hydrology</i> , 2004 , 290, 243	-258	23	
143	A toy model of climatic variability with scaling behaviour. <i>Journal of Hydrology</i> , 2006 , 322, 25-48	6	22	
142	A multicell karstic aquifer model with alternative flow equations. <i>Journal of Hydrology</i> , 2006 , 325, 340-3	3565	22	
141	Optimal decomposition of covariance matrices for multivariate stochastic models in hydrology. Water Resources Research, 1999 , 35, 1219-1229	5.4	22	
140	A Bayesian statistical model for deriving the predictive distribution of hydroclimatic variables. <i>Climate Dynamics</i> , 2014 , 42, 2867-2883	4.2	21	
139	Reconciling hydrology with engineering 2014 , 45, 2-22		19	
138	Two-dimensional Hurstkolmogorov process and its application to rainfall fields. <i>Journal of Hydrology</i> , 2011 , 398, 91-100	6	18	
137	A multi-model approach to the simulation of large scale karst flows. <i>Journal of Hydrology</i> , 2008 , 348, 412-424	6	18	
136	Estimation of Actual Evapotranspiration by Remote Sensing: Application in Thessaly Plain, Greece. <i>Sensors</i> , 2008 , 8, 3586-3600	3.8	18	

135	Broken line smoothing: a simple method for interpolating and smoothing data series. <i>Environmental Modelling and Software</i> , 2000 , 15, 139-149	5.2	18
134	On the prediction of persistent processes using the output of deterministic models. <i>Hydrological Sciences Journal</i> , 2017 , 62, 2083-2102	3.5	17
133	Predictability in dice motion: how does it differ from hydro-meteorological processes?. <i>Hydrological Sciences Journal</i> , 2016 , 61, 1611-1622	3.5	16
132	Harnessing wind and wave resources for a Hybrid Renewable Energy System in remote islands: a combined stochastic and deterministic approach. <i>Energy Procedia</i> , 2017 , 125, 415-424	2.3	16
131	Projecting the future of rainfall extremes: Better classic than trendy. <i>Journal of Hydrology</i> , 2020 , 588, 125005	6	16
130	Scientific dialogue on climate: is it giving black eyes or opening closed eyes? Reply to A black eye for the Hydrological Sciences Journal Dy D. Huard. <i>Hydrological Sciences Journal</i> , 2011 , 56, 1334-1339	3.5	16
129	Entropy Production in Stochastics. <i>Entropy</i> , 2017 , 19, 581	2.8	15
128	Resolving conflicting objectives in the management of the Plastiras Lake: can we quantify beauty?. <i>Hydrology and Earth System Sciences</i> , 2005 , 9, 507-515	5.5	15
127	Quantification of predictive uncertainty in hydrological modelling by harnessing the wisdom of the crowd: A large-sample experiment at monthly timescale. <i>Advances in Water Resources</i> , 2020 , 136, 10347	7 d -7	15
126	Save hydrological observations! Return period estimation without data decimation. <i>Journal of Hydrology</i> , 2019 , 571, 782-792	6	15
125	Insights into the Oroville Dam 2017 Spillway Incident. <i>Geosciences (Switzerland)</i> , 2019 , 9, 37	2.7	14
124	TimeBarrow in stochastic characterization and simulation of atmospheric and hydrological processes. <i>Hydrological Sciences Journal</i> , 2019 , 64, 1013-1037	3.5	14
123	Characterizing and Modeling Seasonality in Extreme Rainfall. Water Resources Research, 2018, 54, 6242	-652458	14
122	Logical and illogical exegeses of hydrometeorological phenomena in ancient Greece. <i>Water Science and Technology: Water Supply</i> , 2007 , 7, 13-22	1.4	14
121	Minimizing water cost in water resource management of Athens. <i>Urban Water Journal</i> , 2004 , 1, 3-15	2.3	14
120	Influence of atmospheric circulation types on space-time distribution of intense rainfall. <i>Journal of Geophysical Research</i> , 1996 , 101, 26267-26276		14
119	A large sample analysis of European rivers on seasonal river flow correlation and its physical drivers. <i>Hydrology and Earth System Sciences</i> , 2019 , 23, 73-91	5.5	13
118	Aesthetical Issues of Leonardo Da Vincill and Pablo Picassoll Paintings with Stochastic Evaluation. <i>Heritage</i> , 2020 , 3, 283-305	1.6	13

(2020-2019)

117	Stochastic Evaluation of Landscapes Transformed by Renewable Energy Installations and Civil Works. <i>Energies</i> , 2019 , 12, 2817	13
116	A Parametric Model for Potential Evapotranspiration Estimation Based on a Simplified Formulation of the Penman- Monteith Equation 2013 ,	13
115	EditorialThe peer-review system: prospects and challenges. <i>Hydrological Sciences Journal</i> , 2005 , 50,	13
114	On the representation of hyetograph characteristics by stochastic rainfall models. <i>Journal of Hydrology</i> , 2001 , 251, 65-87	13
113	Stochastic investigation of long-term persistence in two-dimensional images of rocks. <i>Spatial Statistics</i> , 2019 , 29, 177-191	13
112	Knowable moments for high-order stochastic characterization and modelling of hydrological processes. <i>Hydrological Sciences Journal</i> , 2019 , 64, 19-33	12
111	Revealing hidden persistence in maximum rainfall records. <i>Hydrological Sciences Journal</i> , 2019 , 64, 1673- 3 .68	9 12
110	An algorithm to construct Monte Carlo confidence intervals for an arbitrary function of probability distribution parameters. <i>Computational Statistics</i> , 2013 , 28, 1501-1527	12
109	Evolution of Clustering Quantified by a Stochastic Method©ase Studies on Natural and Human Social Structures. <i>Sustainability</i> , 2020 , 12, 7972	12
108	Variability of global mean annual temperature is significantly influenced by the rhythm of ocean-atmosphere oscillations. <i>Science of the Total Environment</i> , 2020 , 747, 141256	. 12
107	Reliability Concepts in Reservoir Design259	12
106	From Fractals to Stochastics: Seeking Theoretical Consistency in Analysis of Geophysical Data 2018 , 237-278	11
105	On the Exact Distribution of Correlated Extremes in Hydrology. Water Resources Research, 2019 , 55, 10495-1	10423
104	Toward a theoretical framework for integrated modeling of hydrological change. <i>Wiley Interdisciplinary Reviews: Water</i> , 2014 , 1, 427-438	11
103	Fitting Hydrological Models on Multiple Responses Using the Multiobjective Evolutionary Annealing-Simplex Approach. <i>Water Science and Technology Library</i> , 2009 , 259-273	11
102	Stochastic similarities between the microscale of turbulence and hydro-meteorological processes. Hydrological Sciences Journal, 2016 , 61, 1623-1640 3.5	10
101	Application of Stochastic Methods to Double Cyclostationary Processes for Hourly Wind Speed Simulation. <i>Energy Procedia</i> , 2015 , 76, 406-411	10
100	Simple stochastic simulation of time irreversible and reversible processes. <i>Hydrological Sciences Journal</i> , 2020 , 65, 536-551	10

Climatic variability and the evolution of water technologies in Crete, Hellas. Water History, 2016, 8, 137-157 99 10 Hydrologic Persistence and The Hurst Phenomenon210 98 10 The Development of the Athens Water Supply System and Inferences for Optimizing the Scale of 3.6 97 9 Water Infrastructures. Sustainability, 2019, 11, 2657 A stochastic model for the hourly solar radiation process for application in renewable resources 96 9 management. Advances in Geosciences, 45, 139-145 Joint editorial (Fostering innovation and improving impact assessment for journal publications in 8 95 3.5 hydrology. Hydrological Sciences Journal, 2016, 1-4 Evaluation of a Parametric Approach for Estimating Potential Evapotranspiration Across Different 8 94 Climates. Agriculture and Agricultural Science Procedia, 2015, 4, 2-9 <i>HESS Opinions</i> "A random walk on water" 8 93 Quantification of predictive uncertainty in hydrological modelling by harnessing the wisdom of the crowd: Methodology development and investigation using toy models. Advances in Water Resources 92 4.7 **2020**, 136, 103471 Rethinking Climate, Climate Change, and Their Relationship with Water. Water (Switzerland), 2021, 8 91 3 13,849 Bilinear surface smoothing for spatial interpolation with optional incorporation of an explanatory 90 7 variable. Part 2: Application to synthesized and rainfall data. Hydrological Sciences Journal, 2016, 61, 527-540 Field survey and modelling of irrigation water quality indices in a Mediterranean island catchment: 89 7 a comparison between spatial interpolation methods. Hydrological Sciences Journal, 2018, 63, 1447-1467 $^{3.5}$ On the future of journal publications in hydrology 2014, 45, 515-518 88 A STOCHASTIC INDEX METHOD FOR CALCULATING ANNUAL FLOW DURATION CURVES IN 87 1.1 7 INTERMITTENT RIVERS. Irrigation and Drainage, 2013, 62, 41-49 Entropy and Wealth. Entropy, 2021, 23, 86 2.8 Global Investigation of Double Periodicity flourly Wind Speed for Stochastic Simulation; 85 2.3 7 Application in Greece. Energy Procedia, 2016, 97, 278-285 Landscape Planning of Infrastructure through Focus Points Clustering Analysis. Case Study: 84 2.6 Plastiras Artificial Lake (Greece). Infrastructures, 2021, 6, 12 Water and Energy 2021, 619-657 83 7 Simulation of water-energy fluxes through small-scale reservoir systems under limited data 82 6 2.3 availability. Energy Procedia, 2017, 125, 405-414

(2021-2015)

81	Broken line smoothing for data series interpolation by incorporating an explanatory variable with denser observations: application to soil-water and rainfall data. <i>Hydrological Sciences Journal</i> , 2015 , 60, 468-481	3.5	6
80	Atmospheric Temperature and CO2: Hen-Or-Egg Causality?. <i>Sci</i> , 2020 , 2, 83	0.7	6
79	Reply to comment by Grey Nearing on A blueprint for process-based modeling of uncertain hydrological systems <i>Water Resources Research</i> , 2014 , 50, 6264-6268	5.4	6
78	The Mycenaean drainage works of north Kopais, Greece: a new project incorporating surface surveys, geophysical research and excavation. <i>Water Science and Technology: Water Supply</i> , 2013 , 13, 710-718	1.4	6
77	Error analysis of a multi-cell groundwater model. <i>Journal of Hydrology</i> , 2010 , 392, 22-30	6	6
76	Bluecat: A Local Uncertainty Estimator for Deterministic Simulations and Predictions. <i>Water Resources Research</i> , 2022 , 58,	5.4	6
75	Generalized storage-reliability-yield framework for hydroelectric reservoirs. <i>Hydrological Sciences Journal</i> , 2021 , 66, 580-599	3.5	6
74	Investigation on the stochastic nature of the solar radiation process. <i>Energy Procedia</i> , 2017 , 125, 398-40)4 .3	5
73	Simulation of electricity demand in a remote island for optimal planning of a hybrid renewable energy system. <i>Energy Procedia</i> , 2017 , 125, 435-442	2.3	5
72	On the future of journal publications in hydrology. Water Resources Research, 2014 , 50, 2795-2797	5.4	5
71	Hydraulic Characteristics of the Drainage Systems of Ancient Hellenic Theatres: Case Study of the Theatre of Dionysus and Its Implications. <i>Journal of Irrigation and Drainage Engineering - ASCE</i> , 2015 , 141, 04015018	1.1	5
70	Joint Editorial nthe future of journal publications in hydrology. <i>Hydrological Sciences Journal</i> , 2014 , 59, 955-958	3.5	5
69	Reply to discussions of EditorialThe peer review system: prospects and challenges\(\textit{\textit{Hydrological}}\) Sciences Journal, 2006 , 51, 357-363	3.5	5
68	A Comprehensive System for the Exploration and Analysis of Hydrological Data 1999 , 13, 269-302		5
67	Error Evolution in Multi-Step Ahead Streamflow Forecasting for the Operation of Hydropower Reservo	irs	5
66	Comparison of Stochastic and Machine Learning Methods for Multi-Step Ahead Forecasting of Hydrological Processes		5
65	Stratification: An Entropic View of Society Structure. World, 2021, 2, 153-174	1.7	5
64	Stochastic investigation of daily air temperature extremes from a global ground station network. <i>Stochastic Environmental Research and Risk Assessment</i> , 2021 , 35, 1585	3.5	5

63	Water Conflicts: From Ancient to Modern Times and in the Future. Sustainability, 2021, 13, 4237	3.6	5
62	Bilinear surface smoothing for spatial interpolation with optional incorporation of an explanatory variable. Part 1: Theory. <i>Hydrological Sciences Journal</i> , 2016 , 61, 519-526	3.5	5
61	The mode of the climacogram estimator for a Gaussian Hurst-Kolmogorov process. <i>Journal of Hydroinformatics</i> , 2020 , 22, 160-169	2.6	5
60	Agricultural Land or Photovoltaic Parks? The WaterEnergyEood Nexus and Land Development Perspectives in the Thessaly Plain, Greece. <i>Sustainability</i> , 2021 , 13, 8935	3.6	5
59	Stochastic Simulation of Hydrosystems421		5
58	Creating the electric energy mix in a non-connected island. <i>Energy Procedia</i> , 2017 , 125, 425-434	2.3	4
57	Optimal utilization of water resources for local communities in mainland Greece (case study of Karyes, Peloponnese). <i>Procedia Manufacturing</i> , 2020 , 44, 253-260	1.5	4
56	Physics of uncertainty, the Gibbs paradox and indistinguishable particles. <i>Studies in History and Philosophy of Science Part B - Studies in History and Philosophy of Modern Physics</i> , 2013 , 44, 480-489	1	4
55	A power-law approximation of the turbulent flow friction factor useful for the design and simulation of urban water networks. <i>Urban Water Journal</i> , 2008 , 5, 107-115	2.3	4
54	Modeling the Athens water supply system. Water Resources Management, 1992, 6, 57-67	3.7	4
53	A Critical Review of Probability of Extreme Rainfall 2007 , 139-166		4
52	Multiscale Temporal Irreversibility of Streamflow and Its Stochastic Modelling. <i>Hydrology</i> , 2021 , 8, 63	2.8	4
51	From mythology to science: the development of scientific hydrological concepts in Greek antiquity and its relevance to modern hydrology. <i>Hydrology and Earth System Sciences</i> , 2021 , 25, 2419-2444	5.5	4
50	Floods in Greece 2019 , 238-256		4
49	Spatial Hurstkolmogorov Clustering. <i>Encyclopedia</i> , 2021 , 1, 1010-1025		4
48	Energy, variability and weather finance engineering. <i>Energy Procedia</i> , 2017 , 125, 389-397	2.3	3
47	Invigorating hydrological research through journal publications. <i>Hydrological Sciences Journal</i> , 2018 , 63, 1113-1117	3.5	3
46	Hydrometeorological network for flood monitoring and modeling 2013,		3

45	How extreme is extreme? An assessment of daily rainfall distribution tails	3
44	Flood design recipes vs. reality: can predictions for ungauged basins be trusted?	3
43	A Stochastic View of Varying Styles in Art Paintings. <i>Heritage</i> , 2021 , 4, 333-348	3
42	A stochastic simulation scheme for the long-term persistence, heavy-tailed and double periodic behavior of observational and reanalysis wind time-series. <i>Applied Energy</i> , 2021 , 295, 116873	7 3
41	Towards Generic Simulation for Demanding Stochastic Processes. <i>Sci</i> , 2021 , 3, 34 0.7	3
40	Joint Editorial "On the future of journal publications in hydrology". <i>Hydrology and Earth System Sciences</i> , 2014 , 18, 2433-2435	2
39	Reply to Comment on Clausius Clapeyron equation and saturation vapour pressure: simple theory reconciled with practice Deuropean Journal of Physics, 2012 , 33, L13-L14	2
38	Hydronomeas 2020: Open-source decision support system for water resources management	2
37	Revisiting global hydrological cycle: Is it intensifying?	2
36	Rebuttal to review comments on “Revisiting global hydrological cycle: Is it intensifying?” 2020 ,	2
35	Just two moments! A cautionary note against use of high-order moments in multifractal models in hydrolog	y 2
34	Comparison of Stochastic and Machine Learning Methods for Multi-Step Ahead Forecasting of Hydrological Processes	2
33	A Web Based Information System for the Inspection of the Hydraulic Works in Ancient Greece 2010 , 103-114	4 2
32	Joint Editorial: Fostering innovation and improving impact assessment for journal publications in hydrology. <i>Hydrology and Earth System Sciences</i> , 2016 , 20, 1081-1084	2
31	Aesthetical Issues with Stochastic Evaluation 2021 , 173-193	2
30	Joint editorial: Invigorating hydrological research through journal publications. <i>Hydrology and Earth System Sciences</i> , 2018 , 22, 5735-5739	2
29	Landscape design in infrastructure projects - is it an extravagance? A cost-benefit investigation of practices in dams. <i>Landscape Research</i> ,1-18	2
28	Reversing visibility analysis: Towards an accelerated a priori assessment of landscape impacts of renewable energy projects. <i>Renewable and Sustainable Energy Reviews</i> , 2022 , 161, 112389	2 2

27	Joint EditorialBostering Innovation and Improving Impact Assessment for Journal Publications in Hydrology. <i>Vadose Zone Journal</i> , 2016 , 15, vzj2016.01.0002ed	2.7	1
26	Atmospheric Temperature and CO2: Hen-or-Egg Causality?. <i>Sci</i> , 2020 , 2, 77	0.7	1
25	Social vs scientific perception of change in hydrology and climate Reply to the Discussion on the Opinion Paper Hydrology and changelby Arie Ben-Zvi. <i>Hydrological Sciences Journal</i> , 2014 , 59, 1625-1629	6 ^{3.5}	1
24	EditorialRecycling paper vs recycling papers. <i>Hydrological Sciences Journal</i> , 2009 , 54, 3-4	3.5	1
23	Reply to discussions of Editorial Quantifying the impact of hydrological studies II Hydrological Sciences Journal, 2008 , 53, 495-499	3.5	1
22	3D Scanning/Printing: A Technological Stride in Sculpture. <i>Technologies</i> , 2022 , 10, 9	2.4	1
21	Ombrian curves advanced to stochastic modeling of rainfall intensity 2022 , 261-284		1
20	RASPOTIONA New Global PET Dataset by Means of Remote Monthly Temperature Data and Parametric Modelling. <i>Hydrology</i> , 2022 , 9, 32	2.8	1
19	Stochastic Analysis of Hourly to Monthly Potential Evapotranspiration with a Focus on the Long-Range Dependence and Application with Reanalysis and Ground-Station Data. <i>Hydrology</i> , 2021 , 8, 177	2.8	1
18	<i>HESS Opinions</i> "Climate, hydrology, energy, water: recognizing uncertainty and seeking sustainability"		1
17	OpenHi.net: A Synergistically Built, National-Scale Infrastructure for Monitoring the Surface Waters of Greece. <i>Water (Switzerland)</i> , 2021 , 13, 2779	3	1
16	HYDROGEIOS: A semi-distributed GIS-based hydrological model for disturbed river basins		1
15	Joint Editorial Invigorating Hydrological Research through Journal Publications. <i>Journal of Hydrology and Hydromechanics</i> , 2018 , 66, 257-260	2.1	1
14	Regional Ombrian Curves: Design Rainfall Estimation for a Spatially Diverse Rainfall Regime. <i>Hydrology</i> , 2022 , 9, 67	2.8	1
13	A preliminary stochastic analysis of the uncertainty of natural processes related to renewable energy resources. <i>Advances in Geosciences</i> ,45, 193-199		О
12	Atmospheric Temperature and CO2: Hen-or-Egg Causality?. <i>Sci</i> , 2020 , 2, 72	0.7	O
11	Wildfires vs. Sustainable Forest Partitioning. <i>Conservation</i> , 2022 , 2, 195-218		0
10	Climate Extrapolations in Hydrology: The Expanded Bluecat Methodology. <i>Hydrology</i> , 2022 , 9, 86	2.8	O

LIST OF PUBLICATIONS

9	Atmospheric Temperature and CO2: Hen-or-Egg Causality?. <i>Sci</i> , 2020 , 2, 81	0.7
8	openmeteo.org: A Web Service for the Dissemination of Free Meteorological Data. <i>Springer Atmospheric Sciences</i> , 2013 , 203-208	0.7
7	Editorial Welcome, Demetris, as HSJ Deputy Editor. <i>Hydrological Sciences Journal</i> , 2006 , 51, 987-988	3.5
6	Ancient Greece 2007 , 31-38	
5	Ancient Greece 2007 , 28-30	
4	Ancient Greece 2007 , 24-27	
3	Joint editorial: Invigorating hydrological research through journal publications. <i>Proceedings of the International Association of Hydrological Sciences</i> , 380, 3-8	
2	Invigorating Hydrological Research through Journal Publications. <i>Journal of Hydrometeorology</i> , 2018 , 19, 1713-1719	3.7
1	Joint Editorial: Invigorating Hydrological Research through Journal Publications. <i>Vadose Zone Journal</i> , 2018 , 17, 180001ed	2.7