
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5375263/publications.pdf Version: 2024-02-01

KAODU SATO

#	Article	IF	CITATIONS
1	The quasi-biennial oscillation. Reviews of Geophysics, 2001, 39, 179-229.	23.0	1,650
2	Recent developments in gravityâ€wave effects in climate models and the global distribution of gravityâ€wave momentum flux from observations and models. Quarterly Journal of the Royal Meteorological Society, 2010, 136, 1103-1124.	2.7	403
3	A Comparison between Gravity Wave Momentum Fluxes in Observations and Climate Models. Journal of Climate, 2013, 26, 6383-6405.	3.2	245
4	On the origins of mesospheric gravity waves. Geophysical Research Letters, 2009, 36, .	4.0	185
5	Gravity Wave Characteristics in the Southern Hemisphere Revealed by a High-Resolution Middle-Atmosphere General Circulation Model. Journals of the Atmospheric Sciences, 2012, 69, 1378-1396.	1.7	173
6	A statistical study of the structure, saturation and sources of inertio-gravity waves in the lower stratosphere observed with the MU radar. Journal of Atmospheric and Solar-Terrestrial Physics, 1994, 56, 755-774.	0.9	158
7	Estimates of momentum flux associated with equatorial Kelvin and gravity waves. Journal of Geophysical Research, 1997, 102, 26247-26261.	3.3	153
8	General aspects of a T213L256 middle atmosphere general circulation model. Journal of Geophysical Research, 2008, 113, .	3.3	141
9	The Roles of Equatorial Trapped Waves and Internal Inertia–Gravity Waves in Driving the Quasi-Biennial Oscillation. Part I: Zonal Mean Wave Forcing. Journals of the Atmospheric Sciences, 2010, 67, 963-980.	1.7	135
10	Small-Scale Wind Disturbances Observed by the MU Radar during the Passage of Typhoon Kelly. Journals of the Atmospheric Sciences, 1993, 50, 518-537.	1.7	129
11	Gravity Wave Generation around the Polar Vortex in the Stratosphere Revealed by 3-Hourly Radiosonde Observations at Syowa Station. Journals of the Atmospheric Sciences, 2008, 65, 3719-3735.	1.7	120
12	A statistical study of gravity waves in the polar regions based on operational radiosonde data. Journal of Geophysical Research, 2000, 105, 17995-18011.	3.3	112
13	Gravity Waves Appearing in a High-Resolution GCM Simulation. Journals of the Atmospheric Sciences, 1999, 56, 1005-1018.	1.7	93
14	Vertical Wind Disturbances in the Troposphere and Lower Stratosphere Observed by the MU Radar. Journals of the Atmospheric Sciences, 1990, 47, 2803-2817.	1.7	88
15	Gravity waves and turbulence associated with cumulus convection observed with the UHF/VHF clear-air Doppler radars. Journal of Geophysical Research, 1995, 100, 7111-7119.	3.3	74
16	Secondary Generation of Gravity Waves Associated with the Breaking of Mountain Waves. Journals of the Atmospheric Sciences, 1999, 56, 3847-3858.	1.7	67
17	Program of the Antarctic Syowa MST/IS radar (PANSY). Journal of Atmospheric and Solar-Terrestrial Physics, 2014, 118, 2-15.	1.6	66
18	Short-Period Disturbances in the Equatorial Lower Stratosphere. Journal of the Meteorological Society of Japan, 1994, 72, 859-872.	1.8	64

#	Article	IF	CITATIONS
19	Vertical structure of atmospheric gravity waves revealed by the wavelet analysis. Journal of Geophysical Research, 1994, 99, 20623.	3.3	58
20	Low-frequency inertia-gravity waves in the stratosphere revealed by three-week continuous observation with the MU radar. Geophysical Research Letters, 1997, 24, 1739-1742.	4.0	58
21	Mixing states of individual aerosol particles in spring Arctic troposphere during ASTAR 2000 campaign. Journal of Geophysical Research, 2003, 108, .	3.3	58
22	A study on the formation and trend of the Brewer-Dobson circulation. Journal of Geophysical Research, 2011, 116, .	3.3	58
23	The Roles of Equatorial Trapped Waves and Internal Inertia–Gravity Waves in Driving the Quasi-Biennial Oscillation. Part II: Three-Dimensional Distribution of Wave Forcing. Journals of the Atmospheric Sciences, 2010, 67, 981-997.	1.7	52
24	Energy enhancements of gravity waves in the Antarctic lower stratosphere associated with variations in the polar vortex and tropospheric disturbances. Journal of Geophysical Research, 2004, 109, .	3.3	50
25	Growth of planetary waves and the formation of an elevated stratopause after a major stratospheric sudden warming in a T213L256 GCM. Journal of Geophysical Research, 2012, 117, .	3.3	50
26	A general circulation model study of the orographic gravity waves over Antarctica excited by katabatic winds. Journal of Geophysical Research, 2006, 111, .	3.3	49
27	Antarctic polar stratospheric clouds under temperature perturbation by nonorographic inertia gravity waves observed by micropulse lidar at Syowa Station. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	45
28	Global distribution of atmospheric waves in the equatorial upper troposphere and lower stratosphere: AGCM simulation of sources and propagation. Journal of Geophysical Research, 2009, 114, .	3.3	44
29	High-Resolution Observations with MU Radar of a KH Instability Triggered by an Inertia–Gravity Wave in the Upper Part of a Jet Stream. Journals of the Atmospheric Sciences, 2008, 65, 1711-1718.	1.7	43
30	Arctic Study of Tropospheric Aerosol and Radiation (ASTAR) 2000: Arctic haze case study. Tellus, Series B: Chemical and Physical Meteorology, 2005, 57, 141-152.	1.6	43
31	100 Years of Progress in Understanding the Stratosphere and Mesosphere. Meteorological Monographs, 2019, 59, 27.1-27.62.	5.0	37
32	A meridional scan of the stratospheric gravity wave field over the ocean in 2001 (MeSSO2001). Journal of Geophysical Research, 2003, 108, ACL 3-1-ACL 3-13.	3.3	35
33	Frequency spectra and vertical profiles of wind fluctuations in the summer Antarctic mesosphere revealed by MST radar observations. Journal of Geophysical Research D: Atmospheres, 2017, 122, 3-19.	3.3	34
34	Transport and Mixing in the Extratropical Tropopause Region in a High-Vertical-Resolution GCM. Part II: Relative Importance of Large-Scale and Small-Scale Dynamics. Journals of the Atmospheric Sciences, 2010, 67, 1315-1336.	1.7	33
35	Estimate of Turbulent Energy Dissipation Rate From the VHF Radar and Radiosonde Observations in the Antarctic. Journal of Geophysical Research D: Atmospheres, 2019, 124, 2976-2993.	3.3	31
36	An Inertial Gravity Wave Associated with a Synoptic-scale Pressure Trough Observed by the MU Radar. Journal of the Meteorological Society of Japan, 1989, 67, 325-334.	1.8	30

#	Article	IF	CITATIONS
37	Gravity Wave–Induced Anomalous Potential Vorticity Gradient Generating Planetary Waves in the Winter Mesosphere. Journals of the Atmospheric Sciences, 2015, 72, 3609-3624.	1.7	30
38	The Momentum Budget in the Stratosphere, Mesosphere, and Lower Thermosphere. Part I: Contributions of Different Wave Types and In Situ Generation of Rossby Waves. Journals of the Atmospheric Sciences, 2018, 75, 3613-3633.	1.7	30
39	Simulation of the eastward 4â€day wave in the Antarctic winter mesosphere using a gravity wave resolving general circulation model. Journal of Geophysical Research, 2009, 114, .	3.3	29
40	Equatorial Inertia-Gravity Waves in the Lower Stratosphere Revealed by TOGA-COARE TOP Data. Journal of the Meteorological Society of Japan, 1999, 77, 721-736.	1.8	28
41	Statistics of Antarctic surface meteorology based on hourly data in 1957–2007 at Syowa Station. Polar Science, 2007, 1, 1-15.	1.2	28
42	A Formulation of Three-Dimensional Residual Mean Flow Applicable Both to Inertia–Gravity Waves and to Rossby Waves. Journals of the Atmospheric Sciences, 2013, 70, 1577-1602.	1.7	28
43	Southern Hemisphere Extratropical Gravity Wave Sources and Intermittency Revealed by a Middle-Atmosphere General Circulation Model. Journals of the Atmospheric Sciences, 2016, 73, 1335-1349.	1.7	28
44	A Census of Atmospheric Variability From Seconds to Decades. Geophysical Research Letters, 2017, 44, 11,201.	4.0	28
45	Transport and Mixing in the Extratropical Tropopause Region in a High-Vertical-Resolution GCM. Part I: Potential Vorticity and Heat Budget Analysis. Journals of the Atmospheric Sciences, 2010, 67, 1293-1314.	1.7	26
46	A Theoretical Study on the Spontaneous Radiation of Inertia–Gravity Waves Using the Renormalization Group Method. Part I: Derivation of the Renormalization Group Equations. Journals of the Atmospheric Sciences, 2015, 72, 957-983.	1.7	26
47	Vertical resolution dependence of gravity wave momentum flux simulated by an atmospheric general circulation model. Geoscientific Model Development, 2015, 8, 1637-1644.	3.6	25
48	A Study of Multiple Tropopause Structures Caused by Inertia–Gravity Waves in the Antarctic. Journals of the Atmospheric Sciences, 2015, 72, 2109-2130.	1.7	25
49	A New Gravity Wave Parameterization Including Three-Dimensional Propagation. Journal of the Meteorological Society of Japan, 2016, 94, 237-256.	1.8	25
50	Ozone profiles in the high-latitude stratosphere and lower mesosphere measured by the Improved Limb Atmospheric Spectrometer (ILAS)-II: Comparison with other satellite sensors and ozonesondes. Journal of Geophysical Research, 2006, 111, .	3.3	24
51	Longitudinally Dependent Ozone Increase in the Antarctic Polar Vortex Revealed by Balloon and Satellite Observations. Journals of the Atmospheric Sciences, 2009, 66, 1807-1820.	1.7	23
52	The Momentum Budget in the Stratosphere, Mesosphere, and Lower Thermosphere. Part II: The In Situ Generation of Gravity Waves. Journals of the Atmospheric Sciences, 2018, 75, 3635-3651.	1.7	23
53	The climatology of the Brewer–Dobson circulation and the contribution of gravity waves. Atmospheric Chemistry and Physics, 2019, 19, 4517-4539.	4.9	23
54	Application of Deep Learning to Estimate Atmospheric Gravity Wave Parameters in Reanalysis Data Sets. Geophysical Research Letters, 2020, 47, e2020GL089436.	4.0	23

#	Article	IF	CITATIONS
55	A Formulation of Unified Three-Dimensional Wave Activity Flux of Inertia–Gravity Waves and Rossby Waves. Journals of the Atmospheric Sciences, 2013, 70, 1603-1615.	1.7	22
56	On the Three-Dimensional Residual Mean Circulation and Wave Activity Flux of the Primitive Equations. Journal of the Meteorological Society of Japan, 2010, 88, 373-394.	1.8	22
5 7	Optimum system design for CPFSK heterodyne delay demodulation system with DFB LDs. Journal of Lightwave Technology, 1990, 8, 251-258.	4.6	21
58	Vertical wind disturbances in the afternoon of midâ€summer revealed by the MU radar. Geophysical Research Letters, 1992, 19, 1943-1946.	4.0	21
59	Quasi-12†h inertia–gravity waves in the lower mesosphere observed by the PANSY radar at Syowa Station (39.6°†E, 69.0°†S). Atmospheric Chemistry and Physics, 2017, 17, 6455-6476.	4.9	21
60	Medium-Scale Travelling Waves in the Extra-Tropical Upper Troposphere. Journal of the Meteorological Society of Japan, 1993, 71, 427-436.	1.8	20
61	A New Method to Estimate Three-Dimensional Residual-Mean Circulation in the Middle Atmosphere and Its Application to Gravity Wave–Resolving General Circulation Model Data. Journals of the Atmospheric Sciences, 2013, 70, 3756-3779.	1.7	20
62	Convectively Generated Gravity Waves in High Resolution Models of Tropical Dynamics. Journal of Advances in Modeling Earth Systems, 2018, 10, 2564-2588.	3.8	20
63	Layered Structure Associated with Low Potential Vorticity near the Tropopause Seen in High-Resolution Radiosondes over Japan. Journals of the Atmospheric Sciences, 2002, 59, 2782-2800.	1.7	20
64	The effects of atmospheric waves on the amounts of polar stratospheric clouds. Atmospheric Chemistry and Physics, 2011, 11, 11535-11552.	4.9	19
65	Observed and Modeled Mountain Waves from the Surface to the Mesosphere near the Drake Passage. Journals of the Atmospheric Sciences, 2022, 79, 909-932.	1.7	19
66	Arctic Study on Tropospheric Aerosol and Radiation: Comparison of tropospheric aerosol extinction profiles measured by airborne photometer and SAGE II. Geophysical Research Letters, 2003, 30, .	4.0	18
67	Characteristics of inertia gravity waves over the South Pacific as revealed by radiosonde observations. Journal of Geophysical Research, 2006, 111, .	3.3	18
68	Threeâ€dimensional structures of tropical nonmigrating tides in a highâ€verticalâ€resolution general circulation model. Journal of Geophysical Research D: Atmospheres, 2015, 120, 1759-1775.	3.3	18
69	Seasonal and Interannual Variation of Mesospheric Gravity Waves Based on MF Radar Observations over 15 Years at Syowa Station in the Antarctic. Scientific Online Letters on the Atmosphere, 2016, 12, 46-50.	1.4	18
70	Global Characteristics of Medium-Scale Tropopausal Waves Observed in ECMWF Operational Data. Monthly Weather Review, 2000, 128, 3808-3823.	1.4	17
71	A Theoretical Study on the Spontaneous Radiation of Inertia–Gravity Waves Using the Renormalization Group Method. Part II: Verification of the Theoretical Equations by Numerical Simulation. Journals of the Atmospheric Sciences, 2015, 72, 984-1009.	1.7	17
72	Climatology and ENSOâ€related interannual variability of gravity waves in the Southern Hemisphere subtropical stratosphere revealed by highâ€resolution AIRS observations. Journal of Geophysical Research D: Atmospheres, 2016, 121, 7622-7640.	3.3	17

#	Article	IF	CITATIONS
73	MJOâ€related intraseasonal variation of gravity waves in the Southern Hemisphere tropical stratosphere revealed by highâ€resolution AIRS observations. Journal of Geophysical Research D: Atmospheres, 2016, 121, 7641-7651.	3.3	17
74	Wintertime temperature maximum at the subtropical stratopause in a T213L256 GCM. Journal of Geophysical Research, 2008, 113, .	3.3	16
75	Height and time characteristics of seasonal and diurnal variations in PMWE based on 1 year observations by the PANSY radar (69.0°S, 39.6°E). Geophysical Research Letters, 2015, 42, 2100-2108.	4.0	16
76	Formation of an ozone lamina due to differential advection revealed by intensive observations. Journal of Geophysical Research, 2002, 107, ACL 12-1-ACL 12-10.	3.3	15
77	A Study of Inertia-Gravity Waves in the Middle Stratosphere Based on Intensive Radiosonde Observations. Journal of the Meteorological Society of Japan, 2008, 86, 719-732.	1.8	15
78	Intermittency of Gravity Waves in the Antarctic Troposphere and Lower Stratosphere Revealed by the PANSY Radar Observation. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032543.	3.3	14
79	Adaptive Beamforming Technique for Accurate Vertical Wind Measurements with Multichannel MST Radar. Journal of Atmospheric and Oceanic Technology, 2012, 29, 1769-1775.	1.3	13
80	A study of the dynamical characteristics of inertia–gravity waves in the Antarctic mesosphere combining the PANSY radar and a non-hydrostatic general circulation model. Atmospheric Chemistry and Physics, 2019, 19, 3395-3415.	4.9	13
81	Formation of a Mesospheric Inversion Layer and the Subsequent Elevated Stratopause Associated With the Major Stratospheric Sudden Warming in 2018/19. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034681.	3.3	13
82	An ensemble Kalman filter data assimilation system for the whole neutral atmosphere. Geoscientific Model Development, 2020, 13, 3145-3177.	3.6	13
83	Arctic Study of Tropospheric Aerosol and Radiation (ASTAR) 2000: Arctic haze case study. Tellus, Series B: Chemical and Physical Meteorology, 2022, 57, 141.	1.6	12
84	A threeâ€dimensional analysis on the role of atmospheric waves in the climatology and interannual variability of stratospheric final warming in the Southern Hemisphere. Journal of Geophysical Research D: Atmospheres, 2016, 121, 8429-8443.	3.3	12
85	Diurnal Wind Cycles Forcing Inertial Oscillations: A Latitude-Dependent Resonance Phenomenon. Journals of the Atmospheric Sciences, 2014, 71, 767-781.	1.7	11
86	A Two-Dimensional Dynamical Model for the Subseasonal Variability of the Asian Monsoon Anticyclone. Journals of the Atmospheric Sciences, 2018, 75, 3597-3612.	1.7	11
87	ENSO Modulation of the QBO: Results from MIROC Models with and without Nonorographic Gravity Wave Parameterization. Journals of the Atmospheric Sciences, 2019, 76, 3893-3917.	1.7	11
88	Medium-Scale Travelling Waves over the North Atlantic. Journal of the Meteorological Society of Japan, 1995, 73, 1175-1179.	1.8	10
89	A Study on Seasonal Variation of Upper Tropospheric Medium-Scale Waves over East Asia based on Regional Climate Model Data. Journal of the Meteorological Society of Japan, 1997, 75, 13-22.	1.8	10
90	Variability of upper tropospheric clouds in the polar region during stratospheric sudden warmings. Journal of Geophysical Research D: Atmospheres, 2014, 119, 10,100.	3.3	10

#	Article	IF	CITATIONS
91	Vertical Wind Disturbances during a Strong Wind Event Observed by the PANSY Radar at Syowa Station, Antarctica. Monthly Weather Review, 2015, 143, 1804-1821.	1.4	10
92	A Diagnostic Study of Waves on the Tropopause. Journals of the Atmospheric Sciences, 2006, 63, 3315-3332.	1.7	9
93	Simultaneous occurrence of polar stratospheric clouds and upper-tropospheric clouds caused by blocking anticyclones in the Southern Hemisphere. Atmospheric Chemistry and Physics, 2013, 13, 3849-3864.	4.9	9
94	Transient ionization of the mesosphere during auroral breakup: Arase satellite and ground-based conjugate observations at Syowa Station. Earth, Planets and Space, 2019, 71, .	2.5	9
95	Intercomparison of middle atmospheric meteorological analyses for the Northern Hemisphere winter 2009–2010. Atmospheric Chemistry and Physics, 2021, 21, 17577-17605.	4.9	9
96	Balloon-borne observations of lower stratospheric water vapor at Syowa Station, Antarctica in 2013. Polar Science, 2015, 9, 345-353.	1.2	8
97	Characteristics of Vertical Wind Fluctuations in the Lower Troposphere at Syowa Station in the Antarctic Revealed by the PANSY Radar. Scientific Online Letters on the Atmosphere, 2016, 12, 116-120.	1.4	8
98	Statistical Characteristics of Gravity Waves With Nearâ€Inertial Frequencies in the Antarctic Troposphere and Lower Stratosphere Observed by the PANSY Radar. Journal of Geophysical Research D: Atmospheres, 2018, 123, 8993-9010.	3.3	8
99	Trapped waves in the edge region of stratospheric polar vortices. Journal of Geophysical Research, 2003, 108, .	3.3	7
100	Combined MU radar and ozonesonde measurements of turbulence and ozone fluxes in the tropo-stratosphere over Shigaraki, Japan. Geophysical Research Letters, 2006, 33, .	4.0	7
101	Simultaneous Observations of Polar Mesosphere Winter Echoes and Cosmic Noise Absorptions in a Common Volume by the PANSY Radar (69.0°S, 39.6°E). Journal of Geophysical Research: Space Physics, 2018, 123, 5019-5032.	2.4	7
102	Direct Comparison Between Magnetospheric Plasma Waves and Polar Mesosphere Winter Echoes in Both Hemispheres. Journal of Geophysical Research: Space Physics, 2019, 124, 9626-9639.	2.4	7
103	Spectral Observation Theory and Beam Debroadening Algorithm for Atmospheric Radar. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58, 6767-6775.	6.3	7
104	Roles of Rossby Waves, Rossby–Gravity Waves, and Gravity Waves Generated in the Middle Atmosphere for Interhemispheric Coupling. Journals of the Atmospheric Sciences, 2021, 78, 3867-3888.	1.7	7
105	Properties of inertia-gravity waves in the lowermost stratosphere as observed by the PANSY radar over Syowa Station in the Antarctic. Annales Geophysicae, 2016, 34, 543-555.	1.6	7
106	Universal Frequency Spectra of Surface Meteorological Fluctuations. Journal of Climate, 2011, 24, 4718-4732.	3.2	6
107	Simultaneous observation of gravity waves at PMC altitude from AIM/CIPS experiment and PANSY radar over Syowa (69°S, 39°E). Journal of Atmospheric and Solar-Terrestrial Physics, 2017, 164, 324-331.	1.6	6
108	An update on the 4D-LETKF data assimilation system for the whole neutral atmosphere. Geoscientific Model Development, 2022, 15, 2293-2307.	3.6	6

#	Article	IF	CITATIONS
109	A Grid Transformation Method for a Quasi-Uniform, Circular Fine Region Using the Spring Dynamics. Journal of the Meteorological Society of Japan, 2016, 94, 443-452.	1.8	5
110	Characteristics of Mesosphere Echoes over Antarctica Obtained Using PANSY and MF Radars. Scientific Online Letters on the Atmosphere, 2017, 13A, 19-23.	1.4	5
111	Formation of Two-Dimensional Circulation in Response to Unsteady Wave Forcing in the Middle Atmosphere. Journals of the Atmospheric Sciences, 2018, 75, 125-142.	1.7	5
112	Diagnostics of a WN2â€Type Major Sudden Stratospheric Warming Event in February 2018 Using a New Threeâ€Dimensional Wave Activity Flux. Journal of Geophysical Research D: Atmospheres, 2019, 124, 6120-6142.	3.3	5
113	Contribution of Gravity Waves to Universal Vertical Wavenumber (â^¼ <i>m</i> ^{â^'3}) Spectra Revealed by a Gravityâ€Waveâ€Permitting General Circulation Model. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	5
114	A Quasi-geostrophic Analysis on Medium-scale Waves near the Midlatitude Tropopause and their Relation to the Background State. Journal of the Meteorological Society of Japan, 1998, 76, 879-888.	1.8	4
115	An Amplification Mechanism of Medium-Scale Tropopausal Waves. Monthly Weather Review, 2002, 130, 1455-1467.	1.4	4
116	Lower-Stratospheric and Upper-Tropospheric Disturbances Observed by Radiosondes over Thailand during January 2000. Journals of the Atmospheric Sciences, 2006, 63, 3437-3447.	1.7	4
117	A Formulation of Three-Dimensional Residual Mean Flow and Wave Activity Flux Applicable to Equatorial Waves. Journals of the Atmospheric Sciences, 2014, 71, 3427-3438.	1.7	4
118	A Formulation of Three Dimensional Wave Activity Flux Describing Wave Propagation on the Mass-Weighted Isentropic Time Mean Equation. Scientific Online Letters on the Atmosphere, 2016, 12, 198-202.	1.4	4
119	A User Parameter-Free Diagonal-Loading Scheme for Clutter Rejection on Radar Wind Profilers. Journal of Atmospheric and Oceanic Technology, 2017, 34, 1139-1153.	1.3	4
120	The Effect of the Horizontal Component of the Angular Velocity of the Earth's Rotation on Inertia-Gravity Waves. Journal of the Meteorological Society of Japan, 2013, 91, 23-41.	1.8	4
121	Characterizing quasi-biweekly variability of the Asian monsoon anticyclone using potential vorticity and large-scale geopotential height field. Atmospheric Chemistry and Physics, 2020, 20, 13857-13876.	4.9	4
122	Small-scale Gravity Waves in the Lower Stratosphere Revealed by the MU Radar Multi-beam Observation. Journal of the Meteorological Society of Japan, 1988, 66, 987-999.	1.8	3
123	Measurements of stratospheric ozone with a balloon-borne optical ozone sensor. International Journal of Remote Sensing, 2009, 30, 3961-3966.	2.9	3
124	Formulation of Three-Dimensional Quasi-Residual Mean Flow Balanced with Diabatic Heating Rate and Potential Vorticity Flux. Journals of the Atmospheric Sciences, 2019, 76, 851-863.	1.7	3
125	First Incoherent Scatter Measurements and Adaptive Suppression of Field-Aligned Irregularities by the PANSY Radar at Syowa Station, Antarctic. Journal of Atmospheric and Oceanic Technology, 2019, 36, 1881-1888.	1.3	3
126	A Statistical Analysis of the Energy Dissipation Rate Estimated From the PMWE Spectral Width in the Antarctic. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032745.	3.3	3

#	Article	IF	CITATIONS
127	Weakening of Polar Mesosphere Winter Echo and Turbulent Energy Dissipation Rates After a Stratospheric Sudden Warming in the Southern Hemisphere in 2019. Geophysical Research Letters, 2021, 48, e2021GL092705.	4.0	3
128	Observational Studies of Gravity Waves Associated with Convection. , 1997, , 63-68.		3
129	Kelvin and Rossby Waves Trapped at Boundaries under the Full Coriolis Force. Scientific Online Letters on the Atmosphere, 2013, 9, 9-14.	1.4	3
130	Ozone Enhanced Layers in the 2003 Antarctic Ozone Hole. Journal of the Meteorological Society of Japan, 2010, 88, 1-14.	1.8	2
131	A Neutral Wave Observed in the Antarctic Polar Vortex. Journal of the Meteorological Society of Japan, 2006, 84, 97-113.	1.8	2
132	Relation between the interannual variability in the stratospheric Rossby wave forcing and zonal mean fields suggesting an interhemispheric link in the stratosphere. Annales Geophysicae, 2020, 38, 319-329.	1.6	2
133	A Diagnostic Equation for Tendency of Lapse-Rate-Tropopause Heights and Its Application. Journals of the Atmospheric Sciences, 2019, 76, 3337-3350.	1.7	1
134	Characteristics and Sources of Gravity Waves in the Summer Stratosphere Based on Long-Term and High-Resolution Radiosonde Observations. Scientific Online Letters on the Atmosphere, 2020, 16, 64-69.	1.4	1
135	A new three-dimensional residual flow theory and its application to Brewer–Dobson circulation in the middle and upper stratosphere. Journals of the Atmospheric Sciences, 2021, , .	1.7	1
136	Dynamical Analysis of Tropopause Folding Events in the Coastal Region of Antarctica. Journal of Climate, 2022, 35, 4687-4700.	3.2	1
137	ắ⊷極å§åž‹å§æ°—ãf¬ãf¼ãf€ãf¼PANSY. IEICE Communications Society Magazine, 2015, 9, 44-49.	0.0	0