
Dumitru Oancea

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5374924/publications.pdf Version: 2024-02-01

Πιμιτριι Ολνιςελ

#	Article	IF	CITATIONS
1	Inert gas influence on the laminar burning velocity of methane-air mixtures. Journal of Hazardous Materials, 2017, 321, 440-448.	12.4	114
2	Influence of inert gas addition on propagation indices of methane–air deflagrations. Chemical Engineering Research and Design, 2016, 102, 513-522.	5.6	105
3	Temperature and pressure influence on explosion pressures of closed vessel propane–air deflagrations. Journal of Hazardous Materials, 2010, 174, 548-555.	12.4	104
4	Propagation indices of methane-air explosions in closed vessels. Journal of Loss Prevention in the Process Industries, 2017, 47, 110-119.	3.3	90
5	The rate of pressure rise of gaseous propylene–air explosions in spherical and cylindrical enclosures. Journal of Hazardous Materials, 2007, 139, 1-8.	12.4	81
6	Experimental and computed burning velocities of propane–air mixtures. Energy Conversion and Management, 2010, 51, 2979-2984.	9.2	55
7	Temperature and Pressure Influence on Ethane–Air Deflagration Parameters in a Spherical Closed Vessel. Energy & Fuels, 2012, 26, 4840-4848.	5.1	49
8	Normal burning velocity and propagation speed of ethane–air: Pressure and temperature dependence. Fuel, 2015, 147, 27-34.	6.4	48
9	Burning Velocity of Propane–Air Mixtures from Pressure–Time Records during Explosions in a Closed Spherical Vessel. Energy & Fuels, 2012, 26, 901-909.	5.1	47
10	Influence of Initial Pressure and Vessel's Geometry on Deflagration of Stoichiometric Methane–Air Mixture in Small-Scale Closed Vessels. Energy & Fuels, 2020, 34, 3828-3835.	5.1	44
11	Burning velocity evaluation from pressure evolution during the early stage of closed-vessel explosions. Journal of Loss Prevention in the Process Industries, 2006, 19, 334-342.	3.3	41
12	Burning Velocity of Liquefied Petroleum Gas (LPG)â^'Air Mixtures in the Presence of Exhaust Gas. Energy & Fuels, 2010, 24, 1487-1494.	5.1	40
13	Additive effects on the rate of pressure rise for ethylene–air deflagrations in closed vessels. Fuel, 2013, 111, 194-200.	6.4	40
14	Inerting effect of the combustion products on the confined deflagration of liquefied petroleum gas–air mixtures. Journal of Loss Prevention in the Process Industries, 2009, 22, 463-468.	3.3	38
15	Experimental and Numerical Study of Laminar Burning Velocity of Ethane–Air Mixtures of Variable Initial Composition, Temperature and Pressure. Energy & Fuels, 2014, 28, 2179-2188.	5.1	38
16	Closed vessel combustion of propylene–air mixtures in the presence of exhaust gas. Fuel, 2007, 86, 1865-1872.	6.4	37
17	Prediction of flammability limits of fuel-air and fuel-air-inert mixtures from explosivity parameters in closed vessels. Journal of Loss Prevention in the Process Industries, 2015, 34, 65-71.	3.3	37
18	Propagation indices of methane-nitrous oxide flames in the presence of inert additives. Journal of Loss Prevention in the Process Industries, 2017, 49, 418-426.	3.3	36

DUMITRU OANCEA

#	Article	IF	CITATIONS
19	Methane-unconventional oxidant flames. Laminar burning velocities of nitrogen-diluted methane–N 2 O mixtures. Chemical Engineering Research and Design, 2018, 114, 240-250.	5.6	29
20	Influence of inert additives on small-scale closed vessel explosions of propane-air mixtures. Fire Safety Journal, 2020, 111, 102939.	3.1	29
21	Additive Effects on the Burning Velocity of Ethylene–Air Mixtures. Energy & Fuels, 2011, 25, 2444-2451.	5.1	25
22	Pressure and temperature influence on propagation indices of n-butane–air gaseous mixtures. Chemical Engineering Research and Design, 2017, 111, 94-101.	5.6	23
23	Additive influence on maximum experimental safe gap of ethylene-air mixtures. Fuel, 2019, 237, 888-894.	6.4	20
24	CORRELATION OF EXPLOSION PARAMETERS AND EXPLOSION-TYPE EVENTS FOR PREVENTING ENVIRONMENTAL POLLUTION. Environmental Engineering and Management Journal, 2014, 13, 1409-1414.	0.6	17
25	Oxidase–peroxidase reaction: kinetics of peroxidase-catalysed oxidation of 2-aminophenol. Bioprocess and Biosystems Engineering, 2008, 31, 579-586.	3.4	16
26	Kinetics of hydrogen peroxide decomposition by catalase: hydroxylic solvent effects. Bioprocess and Biosystems Engineering, 2012, 35, 1523-1530.	3.4	15
27	Peroxidase-mediated oxidation of l-dopa: A kinetic approach. Biochemical Engineering Journal, 2010, 52, 248-254.	3.6	14
28	Quenching distances, minimum ignition energies and related properties of propane-air-diluent mixtures. Fuel, 2020, 274, 117836.	6.4	14
29	Influence of surfactants on the fading of malachite green. Open Chemistry, 2008, 6, 89-92.	1.9	12
30	Inactivation path during the copper (II) catalyzed synthesis of Questiomycin A from oxidation of 2-aminophenol. Applied Catalysis A: General, 2012, 447-448, 74-80.	4.3	12
31	Three Generations of Polystyrene-Type Strong Acid Cation Exchangers:Â Textural Effects on Proton/Cadmium(II) Ion Exchange Kinetics. Industrial & Engineering Chemistry Research, 2006, 45, 9096-9106.	3.7	11
32	Numerical study of the laminar flame propagation in ethane-air mixtures. Open Chemistry, 2014, 12, 391-402.	1.9	11
33	Kinetics of thermal inactivation of catalase in the presence of additives. Process Biochemistry, 2013, 48, 471-477.	3.7	10
34	Propagation of CH4-N2O-N2 Flames in a Closed Spherical Vessel. Processes, 2021, 9, 851.	2.8	10
35	Catalytic Combustion of the Stoichiometric n-Butane/Air Mixture on Isothermally Heated Platinum Wire. Catalysis Letters, 2008, 121, 247-254.	2.6	8
36	Feed-back action of nitrite in the oxidation of nitrophenols by bicarbonate-activated peroxide system. Applied Catalysis A: General, 2016, 516, 90-99.	4.3	8

DUMITRU OANCEA

#	Article	IF	CITATIONS
37	Effect of CO2 dilution on propane–air isothermal catalytic combustion on platinum. Journal of Thermal Analysis and Calorimetry, 2018, 131, 175-181.	3.6	8
38	Temperature and pH effects on the kinetics of 2-aminophenol auto-oxidation in aqueous solution. Open Chemistry, 2003, 1, 233-241.	1.9	7
39	Thermal stabilities of new synthesized N-methoxy-polynitroanilines derivatives. Journal of Thermal Analysis and Calorimetry, 2009, 98, 779-784.	3.6	7
40	A simplified kinetic model for isothermal catalytic ignition. Journal of Thermal Analysis and Calorimetry, 2011, 103, 911-916.	3.6	7
41	The Effect of Operational Parameters on the Catalytic Combustion of n-Butane/Air Mixtures on Platinum Wire. Catalysis Letters, 2009, 129, 124-129.	2.6	6
42	Kinetics of exothermal decomposition of some ketone-2,4-dinitrophenylhydrazones. Journal of Thermal Analysis and Calorimetry, 2012, 110, 1259-1266.	3.6	6
43	Thermal stabilities of some benzaldehyde 2,4-dinitrophenylhydrazones. Journal of Thermal Analysis and Calorimetry, 2012, 109, 123-129.	3.6	6
44	Kinetic analysis of thermal decomposition in liquid and solid state of 3-nitro and 4-nitro-benzaldehyde-2,4-dinitrophenylhydrazones. Journal of Thermal Analysis and Calorimetry, 2012, 109, 255-263.	3.6	6
45	Isothermal catalytic combustion of n-pentane/air mixtures on platinum wire. Journal of Thermal Analysis and Calorimetry, 2010, 102, 993-1000.	3.6	4
46	A DSC study of new compounds based on (E)-3-(azulen-1-yldiazenyl)-1,2,5-oxadiazole. Journal of Thermal Analysis and Calorimetry, 2020, 146, 1763.	3.6	3
47	Propagation Velocity of Flames in Inert-Diluted Stoichiometric Propane-Air Mixtures: Pressure and Temperature Dependence. Processes, 2021, 9, 997.	2.8	3
48	Heterogeneous catalytic ignition of n-butane/air mixtures on platinum. Open Chemistry, 2009, 7, 478-485.	1.9	2
49	Permanganate-assisted removal of PCR inhibitors during the DNA Chelex extraction from stained denim samples. International Journal of Legal Medicine, 2017, 131, 323-331.	2.2	2
50	Thermal decomposition of new aldehyde-2,4-dinitrophenylhydrazone: Kinetic studies and thermal hazard predictions. Thermochimica Acta, 2020, 689, 178610.	2.7	2
51	The development of a new optical method to measure the delay time of spark ignition. Studia Universitatis Babes-Bolyai Chemia, 2019, 64, 309-322.	0.2	1
52	lgnition by Low-Voltage Electric Discharges of Diluted and Undiluted C3H8–Air Mixtures. Industrial & Engineering Chemistry Research, 2021, 60, 12123-12132.	3.7	0