Aida Rudakova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5374458/publications.pdf Version: 2024-02-01

Διολ Ριιολκουλ

#	Article	IF	CITATIONS
1	Recent advances in composite and heterostructured photoactive materials for the photochemical conversion of solar energy. Current Opinion in Green and Sustainable Chemistry, 2022, 34, 100588.	3.2	7
2	Effect of the Heterovalent Doping of TiO2 with Sc3+ and Nb5+ on the Defect Distribution and Photocatalytic Activity. Catalysts, 2022, 12, 484.	1.6	4
3	MG-63 and FetMSC Cell Response on Atomic Layer Deposited TiO2 Nanolayers Prepared Using Titanium Tetrachloride and Tetraisopropoxide. Coatings, 2022, 12, 668.	1.2	2
4	Antibacterial and Osteogenic Properties of Ag Nanoparticles and Ag/TiO2 Nanostructures Prepared by Atomic Layer Deposition. Journal of Functional Biomaterials, 2022, 13, 62.	1.8	16
5	Raman spectroscopy of SrZrO3 based proton conducting electrolyte: Effect of Y-doping and Sr-nonstoichiometry. International Journal of Hydrogen Energy, 2021, 46, 17007-17018.	3.8	13
6	Photoinduced Hydrophilicity of Surfaces of Thin Films. Colloid Journal, 2021, 83, 20-48.	0.5	12
7	Photoactive Heterostructures: How They Are Made and Explored. Catalysts, 2021, 11, 294.	1.6	13
8	Editorial: Special Issue on Photocatalytic Nanocomposite Materials (PNMs). Catalysts, 2021, 11, 587.	1.6	0
9	Effect of Cu2O Substrate on Photoinduced Hydrophilicity of TiO2 and ZnO Nanocoatings. Nanomaterials, 2021, 11, 1526.	1.9	4
10	Photoinduced hydrophilic behavior of TiO2 thin film on Si substrate. Journal of Alloys and Compounds, 2021, 872, 159746.	2.8	12
11	Effect of the Type of Heterostructures on Photostimulated Alteration of the Surface Hydrophilicity: TiO2/BiVO4 vs. ZnO/BiVO4 Planar Heterostructured Coatings. Catalysts, 2021, 11, 1424.	1.6	5
12	Surface Modification of Additively Manufactured Nitinol by Wet Chemical Etching. Materials, 2021, 14, 7683.	1.3	4
13	Solid-state synthesis, characterization, UV-induced coloration and photocatalytic activity – The Sr6Bi2O11, Sr3Bi2O6 and Sr2Bi2O5 bismuthates. Catalysis Today, 2020, 340, 70-85.	2.2	25
14	Phenomenological Rule from Correlations of Conduction/Valence Band Energies and Bandgap Energies in Semiconductor Photocatalysts: Calcium Bismuthates versus Strontium Bismuthates. ChemCatChem. 2020, 12, 1551-1555.	1.8	12
15	Optical Properties of Various Strontium Bismuthates: Luminescence and UVâ€induced Photocoloration. ChemPhotoChem, 2020, 4, 5209-5222.	1.5	4
16	Materials synthesis, characterization and DFT calculations of the visible-light-active perovskite-like barium bismuthate Ba _{1.264(4)} Bi _{1.971(4)} O ₄ photocatalyst. Journal of Materials Chemistry C. 2020. 8. 3509-3519.	2.7	12
17	UV-induced defect formation in cubic ZrO2. Optical demonstration of Y, Yb and Er dopants interacting with photocarriers. Chemical Physics Letters, 2020, 742, 137136.	1.2	5
18	The Study of Photoactive Materials. Reviews and Advances in Chemistry, 2020, 10, 73-111.	0.2	1

Aida Rudakova

#	Article	IF	CITATIONS
19	Transmission IR cell for atmosphere-controlled studies of photoprocesses on powdered high surface area materials. Review of Scientific Instruments, 2019, 90, 105113.	0.6	6
20	Considerations of Trends in Heterogeneous Photocatalysis. Correlations between Conduction and Valence Band Energies with Bandgap Energies of Various Photocatalysts. ChemCatChem, 2019, 11, 3534-3541.	1.8	19
21	Effect of the TiO ₂ –ZnO Heterostructure on the Photoinduced Hydrophilic Conversion of TiO ₂ and ZnO Surfaces. Journal of Physical Chemistry C, 2019, 123, 8884-8891.	1.5	24
22	Photoelectrochemical Behavior of the Ternary Heterostructured Systems CdS/WO3/TiO2. Catalysts, 2019, 9, 999.	1.6	10
23	Influence of the Dopant Concentration on the Photoelectrochemical Behavior of Al-Doped TiO ₂ . Journal of Physical Chemistry C, 2018, 122, 7975-7981.	1.5	17
24	Spectroscopic studies of ozone in cryosolutions: FT-IR spectra of 16O3 in liquid nitrogen, oxygen, argon and krypton. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 193, 385-392.	2.0	0
25	Effect of resonance dipole-dipole interaction on the infrared spectra of adsorbed CF4. Experimental investigation and theoretical modeling. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 354, 4-10.	2.0	7
26	UV-induced formation of color centers in dispersed TiO2 particles: Effect of thermal treatment, metal (Al) doping, and adsorption of molecules. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 354, 33-46.	2.0	13
27	Self-cleaning properties of zirconium dioxide thin films. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 367, 397-405.	2.0	22
28	The origin of 1560 cmâ^'1 band in experimental IR spectra of water adsorbed on TiO2 surface: Ab initio assessment. Chemical Physics Letters, 2016, 662, 97-101.	1.2	12
29	Light-Controlled ZrO2 Surface Hydrophilicity. Scientific Reports, 2016, 6, 34285.	1.6	22
30	Photoinduced hydrophilic conversion of hydrated ZnO surfaces. Journal of Colloid and Interface Science, 2016, 466, 452-460.	5.0	17
31	Dependences of ZnO Photoinduced Hydrophilic Conversion on Light Intensity and Wavelengths. Journal of Physical Chemistry C, 2015, 119, 9824-9828.	1.5	14
32	Influence of the Dopant Concentration on the Photocatalytic Activity: Al-Doped TiO ₂ . Journal of Physical Chemistry C, 2015, 119, 24695-24703.	1.5	81
33	Thermo- and Photo-stimulated Effects on the Optical Properties of Rutile Titania Ceramic Layers Formed on Titanium Substrates. Chemistry of Materials, 2013, 25, 170-177.	3.2	38
34	Factors Affecting UV-Induced Superhydrophilic Conversion of a TiO ₂ Surface. Journal of Physical Chemistry C, 2013, 117, 12086-12092.	1.5	47
35	Visible–NIR Light Absorption of Titania Thermochemically Fabricated from Titanium and its Alloys; UV- and Visible-Light-Induced Photochromism of Yellow Titania. Journal of Physical Chemistry C, 2013, 117, 25852-25864.	1.5	10
36	Photoinduced Radical Processes on the Spinel (MgAl2O4) Surface Involving Methane, Ammonia, and Methane/Ammonia. Langmuir, 2012, 28, 7368-7373.	1.6	2

AIDA RUDAKOVA

#	Article	IF	CITATIONS
37	IR spectroscopic study of surface properties of amorphous water ice. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2010, 109, 708-718.	0.2	5
38	IR Spectroscopic Testing of Surfaces in Water Ice and in Icy Mixtures with Prussic Acid or Ammonia. Langmuir, 2009, 25, 1482-1487.	1.6	6
39	Spectroscopic study of zeolite Na-ETS-10 and ethylene photopolymerization reaction on its surface. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2008, 105, 739-744.	0.2	1
40	FT-IR Study of Carbon Monoxide Adsorption on Li-Exchanged Zeolite X. Journal of Physical Chemistry B, 2003, 107, 5212-5220.	1.2	11
41	Spectroscopic and Photoluminescence Studies of a Wide Band Gap Insulating Material:Â Powdered and Colloidal ZrO2Sols. Langmuir, 1998, 14, 5011-5022.	1.6	268
42	Photostimulated Reactions at the Surface of Wide Band-Gap Metal Oxides (ZrO2and TiO2): Interdependence of Rates of Reactions on Pressureâ^Concentration and on Light Intensity. Journal of Physical Chemistry B, 1998, 102, 10906-10916.	1.2	60